New Studies
Indicate Florida
Has a Major Mercury Problem, with high levels of mercury in: saltwater fish and
shellfish, freshwater fish, rain, all sewer plants and sewer sludge, crops
where sludge is spread, many adults and children, and widespread adverse health
effects
B. Windham (Ed.)
1. Studies document that Florida Saltwater fish,
shellfish, and freshwater fish have high levels of mercury in large parts of
the state.
2. There are fish consumption
warnings/limits for king mackerel and shark in all parts of the state and
consumption warnings on jack crevalle, spotted sea
trout, Spanish mackerel, gafftopsail catfish, and
lady fish in some areas. A study found
that spotted sea trout in Eastern Florida Bay commonly exceed the 1.5 ppm no consumption mercury level.
3. Five Gulf saltwater species have
average mercury levels on tested samples higher than the FDA action level for
fish; 27 species have average mercury test levels above the FDA warning level
for mercury in fish with some above the action level, and 16 species of fish as
well as crabs, oysters and shrimp have average test levels near the warning
level or some tested above the FDA action level. All of these have levels about the EPA health
criterion for methylmercury in fish and shellfish
tissue.
4. Studies have found that people who eat Gulf Coast
fish at least once per week usuallyhave dangerous
levels of mercury. 29% of a coastal sample ate fish at least once per week.
Studies have found
adverse health effects for those who eat fish at below the FDA warning level.
5. Studies have found that fish and
shellfish that feed near offshore oil and gas platformshave
higher levels of mercury than other areas.
6. Studies
have found that freshwater predator fish such as bass, pickerel, and bowfin
have high levels of mercury in most of the state, with fish consumption
warnings issued. 8 other species have average test levels near the warning level
or some tested above the FDA action level.
7. Studies have found that predator
species such as wading birds, alligators, and Florida Panthers whose diet
depends on fish have high levels of mercury, and adverse health and
reproductive effects. Livers of
cormorants in Florida Bay were found to have mercury levels as high as 250 ppm, higher than any previously tested in Florida.
8. Studies by the Oak Ridge National Laboratory(ORNL) have found high levels of dangerous forms
of mercury in landfill gas being emitted from Florida landfills and from lands
where sewer sludge is spread, due to methylation of
mercury to methyl and dimethyl mercury by soil
bacteria.
9. All sewer plants and sewer sludge in
Florida have dangerous levels of mercury , which is a
major source of mercury in fish and source of mercury in crops and rain where
sewer sludge is spread. High levels of mercury are being found in rain
throughout Florida and the U.S., including methyl mercury from landfills and
land spreading. The most common source of these high mercury levels was found
to be human excretion into home and business sewers from those with amalgam
dental fillings.
10.
The largest source of mercury in most adults is amalgam dental
fillings, but food is a significant source in those who eat fish or
shellfish frequently.
11. The 3 main sources of mercury in
Florida infants are mercury thimerosal in vaccinations; mercury from mother's
amalgam dental fillings transferred across the placenta to the fetus or through
mother's milk to the infant; and mercury from fish. These are all significant
sources in Florida.
12. The National Academy of Sciences
found that 50% of U.S. pregnancies result in birth defects or infants who have
significant developmental effects such as ADD, dyslexia, mood or anxiety
disorders, learning disabilities, eczema, asthma, or other chronic allergies or
health problems. Studies document that the majority of these are due to toxic
exposures, with the most common and significant being mercury.
13. The U.S. CDC and National Academy of
Sciences found that at least 10% of U.S. womenhave
mercury levels high enough to cause developmental neurological conditions inprenatally exposed infants; this may be higher in Florida
due to higher than averagemercury levels in fish and
high levels of fish consumption. The
tests used mainly measured methyl mercury, and did not fully assess exposure
levels from dental amalgam or infant vaccinations, which are the
largest sources in infants.
14. Mercury exposure is cumulative from the various
sources and bioaccumulates over time, with different
sources more significant in different individuals. Health effects are
synergistic between the different forms of mercury exposure and other toxic
exposures, and depend also on individual susceptibility which varies widely‑
due to immune reactivity and systemic detoxification differences of
individuals.
15. Levels of mercury in South
Florida fish and wildlife declined at least 80% after mercury emissions from
South Florida incinerators were required to control emissions.
Documentation:
High levels of mercury have been found
in the rain throughout Florida and the U.S.(34,16,24),
resulting in accumulation of mercury in the environment, water bodies, fish,
wildlife, and people of Florida. Mercury in Florida rainfall measured
more than five times the federal health standard for lakes(34).
The largest sources of emissions
have been found to be coal power plants, incinerators, kilns(16). The level of mercury in rain ranged from 1.3
to 81.2 nanograms per liter depending on location and
weather conditions, with an average of 12.6.
This resulted in depostition of and average
annual depostion of about 17.6 micrograms of mercury
per square meter, much higher than the U.S. EPA health criteria to prevent harm
to wildlife and humans(33). The Electric Power Research Institute(2) and
other studies have found that only ½ gram of mercury is required to contaminate
all predator fish in a 10 acre lake to the extent that fish consumption
warnings are required, and enough mercury is being released into the
environment of Florida to raise levels in all fish to such a level.
Mercury
has been found to be the most toxic substance commonly come in contact with, so
toxic that the drinking water standard for mercury is 2 parts per
billion(ppb). But U.S. EPA have found
that because mercury bioaccumulates in the
environment and fish, to protect from accumulation in fish and wildlife and
thus human health even lower standards appear to be needed and lower standards
have been proposed or adopted in many areas(13e). The Great Lakes Initiative Wildlife Criteria
calculated needed to prevent accumulation in fish and wildlife is 1.3 nanagrams per Liter(ng/L) while the GLI Hunan Health Criteria is 3.1 ng/L(parts per trillion). The EPA Fish Tissue Methyl
Mercury-based Criteria for lakes is 7.8 ng/L
and for rivers is 18 ng/L. The California Toxics Rule
Saltwater Criteria is 25 ng/L(13e,33,34).
According to Government agencies due
to its extreme toxicity and common exposures, mercury causes adverse health
effects in large numbers of people in the U.S.[1,14-16,21,28]. Based on widespread tests, the U.S. CDC
estimates that approx. 16 % of women of childbearing age, 6 million women, have
current mercury levels that would put fetuses at risk of developmental
neurological problems(14), without considering other
common sources of mercury in infants.
Studies by EPA have found that the
fetus on average has mercury levels 70% higher than the mother’s blood, putting
large numbers of infants over the EPA health safety guideline of 5.8 parts per
billion(14c). Studies by the
National Academy of Sciences have found that 50 % of U.S. children have
significant developmental conditions such as ADD, dyslexia, autism, learning
disabilities, mood or anxiety disorders, eczema, asthma, chronic allergies, etc.(8), and studies have also documented that the majority of
these are caused by toxics exposures, with mercury exposures being one of the
most common and significant of these(8,14,15,20,21b,27,28).
The
extreme toxicity of mercury can be seen from documented effects on wildlife by
very low levels of mercury exposure. The amount of mercury in the marine
environment is increasing 4.8% per year, doubling every 16 years(6).
A major factor in the extreme decline of wading birds in Florida is mercury
exposure from eating fish and other fish predators are affected as well(7). However levels of mercury in wading birds and fish in the Everglades area
have declined some since controls were mandated on incinerators a few years
ago. Livers of cormorants in Florida Bay were found to have mercury levels as
high as 250 ppm, higher than any previously tested in
Florida(4b).
Some Florida panthers that eat birds and animals that
eat fish containing very low levels of mercury (about 1 part per million) have
died from chronic mercury poisoning(7). Since mercury
is an estrogenic chemical and reproductive toxin, many of the rest cannot
reproduce. The average male Florida panther has higher estrogen levels than
females, due to the estrogenic properties of mercury(7).
Similar is true of some other animals at the top of the food chain like polar
bears, beluga and orca whales, and alligators, which are affected by mercury
and other hormone disrupting chemicals.
Studies
document that Florida Saltwater fish and shellfish have high levels of mercury
in large parts of the state(4,5,9,12,3b). There are
fish consumption warnings/limits for king mackerel and shark in all parts of
the state and consumption warnings on jack crevalle,
spotted sea trout, Spanish mackerel in several estuaries, and on gafftopsail catfish, and lady fish in Tampa Bay (4,9). Some areas such as North Florida Bay and offshore Tampa
Bay have test levels higher than most other areas(4). A study found that spotted sea
trout in Eastern Florida Bay commonly exceed the 1.5 ppm
no consumption mercury level(4b).
Based on the tests that have been
done, eight saltwater species(king mackerel, black grouper, cobia(ling),
barracuda, bonita(little tunny),
florida smoothhound, great
while shark, tilefish) have average mercury levels on tested samples higher
than the FDA action level of 1 part per million(ppm)
for fish(4,5,12); 24 species had average mercury test levels above the FDA
warning level(0.5 ppm) for mercury in fish(black
drum, blacktip shark, bluefish, bonefish, bonnethead shark, bull shark, snook, greater
amberjack, jack crevalle, ladyfish, lemon shark, red
drum, rock bass, spanish mackeral,
spotted bass, blackfin tuna, gag grouper, wahoo,
bluefish, gafftopsail catfish, crevalle
jack, ladyfish, and stone crab) , and 15 species of fish(blacknose shark, blue crab,
grouper spainish, gulf flounder, permit, red
grouper, sand trout, sheepshead, silver seatrout, southern flounder, tarpon, tripletail, white
bass, yellow bass, yellow jack), as well as crabs, oysters and shrimp have
average test levels near the warning level or some that tested above the FDA
action level(4,12). Approximately 94% of all adult red drum from offshore
waters adjacent to Tampa Bay contained mercury levels greater than or equal to
the 0.5-ppm threshold level, and 64% contained levels greater than or equal to
the DOH 1.5-ppm "no consumption" level (11a). All of these have
average levels of mercury above the U.S. EPA health criterion for methylmercury of 0.3 ppm(33). "Coastal residents have
higher levels of mercury than people who live inland, and anglers and their
families are also at higher risk of mercury exposure,"(5b).
Studies (5,37) have also found that
the level in most large predator species on the Gulf Coast is higher than
levels found to adversely affect health(25,26) with mercury contamination being
pervasive along the whole coastal area, and that people who eat Gulf Coast fish
at least once per week usually have dangerous levels of mercury(5a). 29% of a
coastal sample from Florida, Alabama, and Mississippi ate fish at least once
per week(5a). Over 30% of 100 environmental reporters tested at
a conference in Pittsburg had elevated levels of mercury(5c).
The study found that the older the reporters, or the more often they ate finned
predator fish, the more likely he or she harbored high mercury levels. 21% of women of childbearing age in
a large sample taken in a study sponsored by Greenpeace had dangerous levels of
mercury(5c).
Several studies including a large CDC study have found those with higher
levels of mercury have higher rates of neurological problems, cardiovascular
problems, infertility, and cancer(25,26,30,21). Men in
the highest third of hair mercury content (>2 microg/g)
had an adjusted 1.60-fold (95% CI, 1.24 to 2.06) risk of acute coronary event,
1.68-fold (95% CI, 1.15 to 2.44) risk of CVD, 1.56-fold (95% CI, 0.99 to 2.46)
risk of CHD, and 1.38-fold (95% CI, 1.15 to 1.66) risk of any death compared
with men in the lower two thirds(25). High mercury
content in hair also attenuated the protective effects of high-serum docosahexaenoic acid plus docosapentaenoic
acid concentration. Another study found infertile couples were
significantly more likely to have elevated mercury levels than the infertile
couples, which was the case for both men (35 percent versus 15 percent) and
women (23 percent versus 4 percent).
Furthermore, patients who reported eating high levels of seafood showed
a clear trend towards elevated mercury levels(26a,f).
A
California health clinic study reports that of a California population that eats at least 2 servings of fish per
week, 89% had levels of mercury in the blood exceeding 5 micrograms per liter(ug/L), the level considered the safety limit for mercury by
U.S. EPA and the National Academy of Sciences(26a). Over 50% had levels over 10 ug/L and
15% had levels over
20 ug/L.
The group had chronic health effects including depression, loss of scalp
hair, metallic taste, headaches, arthritic pain in
joints, irritability, tremors, and numbness and tingling in hands and feet. She
also described cognitive problems such as pronounced memory loss, confusion and
difficulties in talking. In some cases, those problems were so severe they
interfered with the ability to earn a living or
attend school. In all cases, health
effects improved after several months of avoiding eating fish. Some women in the group were found to have
transferred excessive mercury to their infants solely through their breast
milk. One breast-fed baby had three times the EPA's safe level for mercury by
the time he was 4 months old; and another had 4 times the EPA safe level at 19
months. Some of the infants with high
mercury levels suffered severe neurological problems such as autism, and
improved when
treated for mercury toxicity.
The Mobile Register studies(5) have also
found that fish and shellfish that feed near offshore oil and gas platforms
have significantly higher levels of mercury than other areas(5) due to mercury
used in drilling. Over 200 tons of mercury has been added to the Gulf through
drilling over the last 30 years. More fishing occurs near such platforms since
shellfish and fish tend to congregate in such areas. Other known major sources
of mercury throughout the coastal area are air emissions and sewer outfalls,
with some other large local industrial sites such as chlor-alkali
plants(16).
Accumulation of atmospheric oxidants and mercury can cause high levels
of mercury deposition in coastal areas when activated by sunlight, which can
result in very high levels of mercury in fish and wild life(32). Bacteria in sediments and fish intestines methylate inorganic mercury to methyl mercury(31).
Studies have found that large pelagic Gulf fish species such
as marlins, swordfish, and shark have levels of mercury 20 to 30 times that of
most Gulf fish species(37). The U.S. FDA recommends
that pregnant women entirely avoid eating shark, swordfish, king mackerel and tilefish(10a), because a significant portion of these types
of fish have mercury levels above the FDA action level of 1 ppm.
However other studies(25,26) including one by the National Academy of
Sciences(14) have found the old FDA action level of 1 ppm
is obsolete and not adequate to protect the public, as adverse effects have
been found for those eating fish at least once per week at average mercury
levels below the FDA warning level of ½ ppm(25). The Health Canada limit for mercury in marine
and freshwater fish is 0.5 ppm(12b) and the EPA reference level for children and pregnant
women is 0.3 ppm.
A coalition of organizations using the name Environmental
Working Group(EWG) did a large study to more fully
assess mercury exposure effects and safety limits(12). In addition to the FDA
limits, EWG advises pregnant women, nursing mothers and all women of
childbearing age, should not eat tuna steaks, sea bass, oysters from the Gulf
Coast, marlin, halibut, pike, walleye, white croaker, and largemouth bass(12). And that these women should eat no more than one
meal per month combined of canned tuna, mahi-mahi, blue mussel, Eastern oyster,
cod, pollock, salmon from the Great Lakes, blue crab
from the Gulf of Mexico, wild channel catfish and lake
whitefish. The EWG analysis was based on 56,000 test results on mercury
in fish from 7 different government agencies, and toxicity studies by U.S. CDC
and National Academy of Sciences. A
large FDA study found that the average level of mercury in white canned tuna is
0.358, high enough to require stringent limits to prevent exceeding EPA’s
reference dose(36), since the safe levels are commonly exceeded.
In
a 2010 study, 55% of samples from the 3 top brands of tuna sold in
the U.S. had mercury levels higher than
the EPA standard of 0.5 parts per
million and 5% had levels over the FDA 1.0 ppm limit for commercially sold
fish(36b).
However EWG recognizes that
fish is an important health food with nutrients and essential fatty acids hard
to substitute from other sources. The following fish are safer choices for
avoiding mercury exposure: farmed trout or catfish, shrimp, fish sticks, wild
Pacific salmon, croaker, haddock, some varieties of flounder, and blue crab
from the mid-Atlantic. (12)
Studies have found that freshwater predator fish such as
bass, pickerel, and bowfin have high levels of mercury in most of Florida, with
fish consumption warnings issued(3,4,20). Eight other species (alligator gar,
black crappie, white crappie, blue catfish, flathead catfish, brook trout,
drum, striped bass) have average test levels near the FDA warning level or some
tested above the FDA action level(4). Studies have found that predator species
such as wading birds, alligators, and Florida Panthers whose diet depends on
fish have high levels of mercury, and adverse health and reproductive
effects(7). In recent U.S. EPA tests of fish caught in Florida lakes, every
fish sample tested was contaminated with mercury, and sixty-three percent
contained mercury levels that exceed EPA’s “safe” limit for women of
childbearing age(11b). Over
2 million acres of Florida’s surface waters have fish with high levels of
mercury, averaging above the FDA/EPA warning level of 0.5 parts per million(20). The
major source of mercury into these water bodies is air deposition that is
brought down in rain. A Florida
emissions inventory found that the major sources of atmospheric mercury were
municipal solid waste combustors (MSW), electric utility industry, and medical
waste incinerators(20), but incinerator emissions have
been reduced in recent years.
The most
vulnerable groups to mercury exposure are women who are pregnant or might
become pregnant, nursing mothers, and young children(8,10b,12,27,28).
These groups should limit consumption of freshwater fish to no more than one
meal per week (6 ounces of cooked fish for adults and 2 ounces of cooked fish
for young children).
High levels of mercury
including the very toxic organic forms are being measured in rainfall
throughout the U.S.(24) High levels of the extremely toxic di-methyl
and methyl mercury forms of mercury are being found in landfill gas coming from
landfills and appear to be a source of some of this(22-24). Bacteria in
landfills and in soils where sewer sludge is spread have been found to be methylating elemental and inorganic mercury to the organic forms(22,23). Government studies have found that all sewers
in the U.S. and all sewer sludge have high levels of mercury, with the most
common significant source dental amalgam from dental offices or from being
excreted mercury into sewers from those with amalgam dental fillings(13,23,28,21).
Dental amalgam waste and mercury from sewer sludge are major sources of mercury
in some landfills and sludge is also used in landspreading
on farms and other areas. Programs are already being implemented to reduce most
other sources of mercury into sewers and into landfills such as flourescent light tubes. High levels of mercury have been
found to be taken up in crops on land where sludge is spread(23),
and high levels of emissions of elemental and organic mercury forms methylated by soil bacteria. Health Canada and Canadian
sewer agencies have also documented similar information on mercury emissions
from amalgam waste and sewer sludge to waterways, crops, and air(29),
and have implemented standards and restrictions to help alleviate this problem.
Recent government studies
have documented that the environmental effects of mercury excreted into sewers
from those with amalgam dental fillings are widespread and significant, and are
affecting everyone in Florida(22-24,29). Dental amalgam
mercury has been documented to have a high bioavailability in water(31) and dental offices are a major source of mercury
into waterways. Also the average amalgam
filling has more than ½ gram of mercury, and has been documented to
continuously leak mercury into the body of those with amalgam fillings due to
the low mercury vapor pressure and galvanic current induced by mixed metals in
the mouth. Because of the extreme toxicity of mercury, only ½ gram is required
to contaminate the ecosystem and fish of a 10 acre lake to the extent that a
health warning would be issued by the government to not eat the fish[2]. Over half the rivers and lakes in Florida have such
health warnings[3,4] banning or limiting eating of
fish, and most other states and 4 Canadian provinces have similar health
warnings(6,29). Wisconsin has fish consumption warnings for over 250 lakes and
rivers(6,13) and Minnesota even more, as part of the total of over 95,000 such
lakes with warnings(6), 33% of all U.S. lake surface area and 15% of all U.S.
river miles. All Great Lakes as well as many coastal bays and estuaries and
large numbers of salt water fish carry similar health warnings-70% of all
coastal miles and 100% for the Gulf of Mexico.
Government studies have
determined that dental amalgam is by far the largest source of mercury in
sewers and sewer sludge, with dental amalgam the largest source and waste
excretion from those with amalgam the second largest source(13e). Unlike many European countries and Canada(29) which have more stringent regulation of mercury
that require amalgam separators in dental offices, the U.S. does not and most
dental offices do not have them. The discharge into sewers at a dental office
per dentist without amalgam separators is approximately 270 milligrams per day(18,13e(Table4)). For the U.S. this would be
approximately 5400 kg/yr (or slightly over 6 tons/year of mercury into sewers
and thus into streams and lakes in most cases. In Canada the annual amount
discharged is about 2 tons per year, with portions ending up in waters/fish,
some in landfills and cropland, and in air emissions. The recently enacted
regulations on dental office waste are expected to reduce emissions by at least
63% by 2005, compared to year 2000 levels(29).
A study in Michigan estimated that dental mercury is
responsible for approximately 14 % of mercury discharged to streams(18).
Other EPA and municipal studies(18,13) found that
dental office waste was responsible for similar levels of mercury in lakes,
bays, and streams in other areas throughout the U.S. Another Canadian study
found similar levels of mercury contribution from dental offices into lakes and
streams(29). Surveys of dental office disposal
practices found the majority violated disposal regulations, and dangerous
levels of mercury are accumulating in pipes and septic tanks from many offices(18,29). As
previously noted, dental amalgam mercury has been documented to have a high
bioavailability in water(31).
The total discharge into sewers from
dental amalgam at individual homes and businesses is second only to dental
offices, since the average person with several amalgam fillings excretes in
body waste as much as 100 micrograms per day of mercury and (17,19,21). This has
also been confirmed by medical labs(13c) such as
Doctors Data Lab in Chicago and Biospectron in Sweden
which do thousands of stool tests per year and is consistent with studies
measuring levels in residential sewers by municipalities(13b). The reference
average level of mercury in feces(dry weight) for
those tested at Doctors Data Lab with amalgam fillings is 0.26
milligrams/kilogram, compared to the reference average level for those without
amalgam fillings of .02 mg/kg(ppm). The AMSA study adopted a more conservative estimate
of 27 to 39 micrograms per day(13e). In the U.S. this would amount to between 2500
to 7300 kilograms per year into sewers or from 3 to 8 tons per year. Thus the
amount of mercury being excreted from dental amalgam is more than enough to
cause dangerous levels of mercury in fish in most U.S. streams into which
sewers empty.
Oak Ridge National Laboratory (ORNL)
studies have also documented high levels of mercury in sewers and sewer sludge(23). According to an EPA study the majority of U.S.
sewerage plants cannot meet the new EPA guideline for mercury discharge into
waterways that was designed to prevent bioaccumulation in fish and wildlife due
to household sewer mercury levels(13). Over 3 tons of
mercury flows into the Chesapeake Bay annually from sewer plants, with numerous
resulting fish consumption advisories for that area and similar for other
areas(6). The EPA discharge rule is being reevaluated due to a National Academy
of Sciences report of July 2000 that found that even small levels of mercury in
fish result in unacceptable risks of birth defects and developmental effects in
infants(14).
However it should be remembered that the
largest sources of mercury air emissions are coal power plants and
incinerators, with additional significant contributions from power plants
burning bunker oil, and these are also significant sources of mercury in
Florida's streams, lakes, and bays(16). Florida ranks 14th nationwide for the
most mercury emissions from power plants, releasing 2,411 pounds of mercury into
the air in 2002, according to the most recent EPA data(11b).
The Crystal River Energy Complex alone emitted 491 pounds of mercury into the
air in 2002. Since only ½ gram of mercury is required to contaminate all fish in a
10 acre lake to dangerous levels requiring health warnings(2), all of these
sources need to be reduced to result in fish safe to eat.
Thousands of peer-reviewed
studies have documented that amalgam dental fillings, in addition to being a
major source of mercury in the environment and fish, are also the number one
source of mercury in most people with several fillings, with exposure levels
above Government health guidelines (21). The Gov't
health guideline(MRLs) for mercury(15) of 0.2 micrograms per kilogram body
weight per day for organic mercury result in limits of approx. 6 micrograms per
day for a 44 pound child, 16 ug/d for a 115 pound
adult, and 24 ug/day for a large adult. The
corresponding MRL for mercury vapor(the type emitted
by amalgam) is 0.2 micrograms per cubic meter of air breathed which results in
a limit of about 6 ug/d for a large adult and less
for a child. These levels are commonly exceeded in people with several amalgam fillings(21) and in those who regularly eat seafood with mercury
levels commonly found in Florida fish (4, 5,12,etc. ). Thousands of
peer-reviewed studies also document that mercury causes over 30 chronic
neurological or immune related health conditions(21,27,28), from which
thousands are documented to have recovered or significantly improved after
proper treatment of mercury toxicity(21b, Section VI, 20). Those interested in
additional information on testing for or treatments for mercury toxicity or in
clinics with experience treating mercury toxicity problems can contact the
Florida Chapter of the national patients support organization(DAMS)
at: www.myflcv.com//indexd.html
References
(1) ATSDR/EPA Priority List for 2005: Top 20 Hazardous Substances,
Agency for Toxic Substances and Disease Registry,U.S.
Department of Health and Human Services,
www.atsdr.cdc.gov/clist.html;
&
(b) Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, Toxicological Profile for
Mercury , 1999, &(c) U.S. EPA, Region I, 2001, www.epa.gov/region01/children/outdoors.htm
(2) Electric Power Research Institute. Mercury in the
Environment. Electric EPRI Journal 1990; April, p5; & EPRI
Technical Brief:"Mercury in the Environment", 1993
(3) Florida Department of Health, Bureau of
Environmental Toxicology, Health Advisories for Mercury in Florida Fish 2004, http://www.doh.state.fl.us/environment/community/fishconsumptionadvisories/Fish_consumption_guide.pdf
; & FDEP, Toxic metal levels in Florida shellfish,
1990; & Mercury Studies in the Florida Everglades, http://sflwww.er.usgs.gov/publications/fs/166-96/
(4) U.S. Geological Survey, The Occurrence of
Mercury in the Fishery Resources of the Gulf of Mexico; http://mo.cr.usgs.gov/gmp/hg.cfm &, Estuarine Research Federation
http://erf.org/user-cgi/conference_abstract.pl?conference=erf2001&id=4 ; & http://gill.tamug.tamu.edu/Projects/Articles/hgreport.pdf
& (b)SFWMD, 2003 Everglades
Consolidated Report, Appendix 2B-4: Preliminary Report on Florida Bay Mercury
http://www.sfwmd.gov/org/ema/everglades/consolidated_03/ecr2003/appendices/app2b-4.pdf
and © Florida DOH Mercury
Saltwater Fish Advisories, 2004
www.doh.state.fl.us/environment/hsee/fishconsumptionadvisories/MEFG.htm
& D.H.Adams, R.H.McMichael, Florida Marine Research Institute, Technical
Reports, Mercury Levels in Marine and Estuarine Fishes of Florida, 2001; & Mercury in Marine Fish, Florida Fish & Wildlife Conservation
Commission, http://capmel.com/Mercury_in_fish.htm
&(d)
Mississippi fish warnings, www.deq.state.ms.us/newweb/homepages.nsf & http://www.masgc.org/mercury/abstracts.html
(5) Mobile Register, Mercury Series(Aug 2001
to Mar 2002): Mercury Taints Seafood
www.al.com/specialreport/?mobileregister/mercuryinthewater.html
http://www.consumeraffairs.com/news04/2006/02/mercury_sport_fish.html
, & (c) Dr. John Spengler, Harvard's School of Public Health,
Society of Environmental Journalists at
Carnegie Mellon University in Pittsburgh, Oct 24, 2004; &
(6) United States Environmental
Protection Agency, Office of Water, June 2003, The National Listing of Fish and
Wildlife Advisories: Summary of 2002 Data,
EPA-823-F-00-20,www.epa.gov/waterscience/fish/ ; &
U.S. EPA, Office of Water, Mercury Update: Impact on Fish Advisories-Fact
Sheet, http://www.epa.gov/ost/fish/mercury.html; & New England Governors
and Eastern Canadian Premiers Environment Committee Mercury Action Plan, June
1998.
(7) High Mercury in Wading Birds; & High Mercury in Florida
alligators hppt://everglades.fiu.edu/taskforce/precursor/chapter10.html ; &
C.F.Facemire et al, "Reproductive impairment in
the Florida Panther", Health Perspect,1995, 103 (Supp4):79-86; & M.Maretta et al, "Effect of mercury on the epithelium
of the fowl testis", Vet Hung 1995, 43(1):153-6.
(8) National Academy of Sciences, National Research Council, Committee
on Developmental Toxicology, Scientific Frontiers in Developmental
Toxicology and Risk Assessment, June 1, 2000, 313 pages; & Evaluating
Chemical and Other Agent Exposures for Reproductive and Developmental Toxicity
Subcommittee on Reproductive and Developmental Toxicity, Committee on
Toxicology, Board on Environmental Studies and Toxicology, National Research
Council National Academy Press, 262 pages, 6 x 9, 2001
(9) Florida Mackerel Mercury Warning; Florida Dept. of Environmental
Regulation,
www.myflorida.com/chdcollier/health_alerts/health_alerts.htm#_Hlt516549004;
& Florida Marine Species Mercury Warning for Species in some water bodies
(Spanish mackerel, Ladyfish, Gafftop sailcat, Crevelle Jack, Spotted
sea trout-eat only one serving per month)
ftp://ftp.dep.state.fl.us/pub/labs/assessment/mercury/health/fha951006.pdf
&
http://marinefisheries.org/Pubs/mercury.htm
(10) (a)U.S. Food and Drug Administration, An Important Message for
Pregnant Women and Women Who May Become Pregnant About the Risks of Mercury in
Fish, Jan 2001, www.fda.gov/bbs/topics/ANSWERS/2001/advisory.html:
& (b)
U.S. EPA, "National Advice for Women and Children on Mercury in Freshwater
Fish", www.epa.gov/ost/fishadvice/factsheet.html
(11) (a) Mercury
concentrations in red drum, Sciaenops ocellatus, from estuarine and offshore waters of Florida. Adams DH, Onorato
GV. Florida Fish and Wildlife Conservation
Commission, Mar
Pollut Bull. 2005 Mar;50(3):291-300.
Epub 2004 Dec 10;
&(b) Florida PIRG, “Reel
Danger: Power Plant Mercury Emissions and the Fish We Eat” , & “Fishing
For Trouble: How Toxic Mercury Contaminates Fish in U.S. Waterways,"
(12) Environmental
Working Group - U.S. Public Interest Research Group, What Women Should Know
About Mercury Contamination in Fish" Including Expanded List of Fish to
Avoid, www.ewg.org/pub/home/reports/brainfood/sidebar.html ; &(b) Health
Canada commercial fish health standard, www.inspection.gc.ca/english/corpaffr/foodfacts/mercurye.shtml
(13)(a) U.S.
Environmental Protection Agency Mercury Sourcebook: a Guide to Help Your
Community Identify and Reduce Releases of Elemental Mercury. Section III,
Mercury Use: Dentists, p249-292.
www.epa.gov/grtlakes/bnsdocs/hgsbook/index.html
& http://home.xnet.com/~aadr/thetest.htm
& (b)
Association of Metropolitan Sewerage Agencies' Evaluation of Domestic Sources
of Mercury : www.amsa-cleanwater.org/pubs/mercury/mercury.cfm
; & (c) Doctors Data Inc.; Fecal Elements Test; P.O.Box
111, West Chicago, Illinois, 60186-0111; www.doctorsdata.com & Biospectron Lab, LMI, Lennart Måånsson International AB, lmi.analyslab@swipnet.se &(d) Household mercury complicates
EPA Rule, A. Huslin, Washington Post, Aug 26,2000, pg
B2; & (e) Association of Metropolitan Sewerage Agencies(AMSA)/U.S. EPA, Mercury
Source Control Program Evaluation (
www.amsa-cleanwater.org/advocacy/mercgrant/finalreport.pdf ), Larry Walker Associates, Final Report, March
2002.
(14) (a)National
Research Council, Toxicological Effects of Methyl mercury (2000), pp. 304-332:
Risk Characterization and Public Health Implications, Nat'l Academy Press 2000.
www.nap.edu; & (b) U.S. Centers for Disease Control, . Mar 2001, Blood and Hair Mercury Levels in Young
Children and Women of Childbearing Age ‑‑‑
United States, 1999 www.cdc.gov/mmwr/preview/mmwrhtml/mm5008a2.htm &
U.S. CDC, Second National Report on Human Exposure to Environmental
Chemicals, www.cdc.gov/exposurereport/;
&(c) U.S. EPA, K.R. Mahaffey, Methyl mercury;
epidemiology update, presentation at EPA's National Forum on Contaminants in
Fish, in San Diego, Jan 26, 2004; Env Health
Perspectives, 2003, 111: 1465-70; & Grandjean P,
Science News - April 8, 2004 .
(15) Agency for
Toxic Substances and Disease Registry, U.S. Public Health Service, Toxicological
Profile for Mercury , 1999; & Apr 19,1999 Media Advisory, New MRLs for
toxic substances, MRL:elemental mercury
vapor/inhalation/chronic & MRL: methyl mercury/ oral/acute; &
http://www.atsdr.cdc.gov/mrls.html
(16) B. Windham,
Mercury and toxic metals in the Florida ecosystem: distribution, sources, and
adverse health effects, 2000, www.myflcv.com/tm98.html
(17)Bjorkman L; Sandborgh-Englund G; Ekstrand J.
Mercury in saliva and feces after removal of amalgam fillings. Toxicol Appl Pharmacol
1997 May;144(1):156-62; & Skare
I; Engqvist A. National Institute of Occupational
Health, Human exposure to mercury and silver released from dental amalgam
restorations. Arch Environ Health 1994 Sep-Oct;49(5):384-9.
(18)Arenholt-Bindslev, D.; Larsen, A.H. "Mercury Levels
and Discharge in Waste Water from Dental Clinics" Water Air Soil
Pollution, 86(1-4):93-9, (1996); & Rowe NH; Sidhu
KS; Chadzynski L; Babcock RF. School of Dentistry,
University of Michigan, Ann Arbor, USA. J Mich Dent
Assoc 1996 Feb;78(2):32-6
(19) Ekstrand J; Bjorkman L; Edlund C; Sandborgh-Englund G.
Toxicological aspects on the release and systemic uptake of mercury from dental
amalgam. Eur J Oral Sci
1998 Apr;106(2 Pt 2):678-86
(20)Thomas D. Atkeson, FDEP Mercury Coordinator, South Florida Mercury
Science Program,
MERCURY IN
FLORIDA'S ENVIRONMENT,www.dep.state.fl.us/labs/mercury/docs/flmercury.htm
(21) DAMS Press
Release, Jan 21, 2001, Dental Amalgam Fillings are the Number One Source of
Mercury in People and Exposures from Amalgam Commonly Exceed Government Health
Guidelines. (see below) www.com/damspr1.html ; & B.Windham, Mechanisms by which mercury causes over 30
chronic health conditions(over 2500 peer-reviewed studies),2006, www.flcv.com/indexa.html
(22)Lindberg, S.G.,
et al. 2001. Methylated mercury species in municipal
waste landfill gas sampled in Florida, USA. Atmospheric Environment
35(Aug):4011-15.; & Lindberg, S.G. et al, Airborne Emissions of mercury
from municipal solid waste: measurements from 3 Florida landfills, JAWMA, 2002
;& Janet Raloff, Landfill gas found to have high
levels of highly toxic dimethyl form of mercury. Week
of July 7, 2001; Vol. 160, No. 1, Science News;
& Study Says Landfill Bacteria Worsen Mercury
Pollution, Solid Waste Report, Vol. 32 No. 28 July 12, 2001 Page 217. ; & U.S. EPA, Air
Emissions of landfill gas pollutants at Fresh Kills Landfill, Staten Island,
NJ, December 1995, NTIS Order number PB97-500508INC 04/20/2001
[www.ntis.gov/fcpc/cpn7634.htm]
(23) Methyl Mercury Contamination and Emission to the Atmosphere from
Soil Amended with Municipal Sewage Sludge, Anthony Carpi, toxicology, Journal
Environ. Quality 26:1650-1655 (1997) Genetic Analysis of Drinking Water[
www.toxicsaction.org/tacsludgereport10_30_01.pdf]; & Carpi A et al 1997,
The sunlight mediated emission of elemental mercury from soil amended with municpal sewate sludge, Envir Sci & Technol; 31:2085-91; & Department of Energy (DOE) Oak
Ridge National Laboratory (ORNL), Press Release: ORNL finds green plants
fertilized by sewer sludge emit organic and inorganic mercury, [www.ornl.gov/Press_Releases/archive/mr19960117-01.html]; & Maine
Toxics Action Center, Toxic sludge: threatening farm lands and public health,
Oct 2001. [www.toxicsaction.org/tacsludgereport10_30_01.pdf]
(24) High mercury levels in rain throughout U.S., www.flcv.com//rainhg.html;
& National Wildlife Federation "Cycle of Harm: Mercury's Pathway from Rain to Fish in
the Environment,"
http://www.enviro-net.com/main.asp?page=story&id=2&month=07&paper=fl&year=2003
(25) Virtanen JK, Voutilainen S, Salonen Jt et al. Mercury, Fish
Oils, and Risk of Acute Coronary Events and Cardiovascular Disease, Coronary
Heart Disease, and All-Cause Mortality in Men in Eastern Finland. Arterioscler Thromb Vasc Biol. 2004 Nov 11; & Rissanen T, Voutilainen S, Nyyssonen K, Lakka TA, Salonen JT. Fish
oil-derived fatty acids, docosahexaenoic acid and docosapentaenoic acid, and the risk of acute coronary
events: the Kuopio ischaemic heart disease risk
factor study. Circulation. 2000 Nov
28;102(22):2677-9. & J.T. Salonen
et al, "Intake of mercury from fish and the risk of myocardial infarction
and cardiovascular disease in eastern Finnish men", Circulation, 1995;
91(3):645-55; & Wisconsin Bureau of Public Health, Imported seabass as a source of mercury exposure: a Wisconsin Case
Study, Environ Health Perspect 1995, 103(6): 604-6;
& Watanabe KH, Desimone
FW, Thiyagarajah A, Hartley WR, Hindrichs
AE. Fish tissue
quality in the lower Mississippi River and health risks from fish consumption.
Sci Total Environ. 2003 Jan 20;302(1-3):109-26.
(26)
(a) J. Hightower, “Methylmercury Contaminmation
in Fish: Human Exposures and Case Reports," Environmental Health Perspectives; Nov 1,
2002; & (b) A Oskarsson
et al, Swedish National Food Administration, Mercury levels in hair from people
eating large quantities of Swedish freshwater fish. Food Addit
Contam 1990; 7(4):555-62; & (c) Jacobsen, Preventive Medicine February 2002;34:221-225; &(d) Dickman MD; Leung
KM, "Hong Kong subfertility links to mercury in
human hair and fish", Sci Total Environ,
1998,214:165-74; & Mercury and organochlorine
exposure from fish consumption in Hong Kong. Chemosphere 1998
Aug;37(5):991-1015; &(e) Y.Kinjo et al,
"Cancer mortality in patients exposed to methyl mercury through fish
diet", J Epidemiol, 1996, 6(3):134-8; & (f) Choy C et al, Seafood consumption linked to infertility, BJOG: An
International Journal of Obstetrics & Gynaecology
2002 109:1121-5;
& (g) Mercury in human hair as an
indicator of the fish consumption, Neuro
Endocrinol Lett. 2008
Oct;29(5):675-9, Kruzikova K,
Modra H, Kensova R, Skocovska B,
Wlasow T, Svoboda T, Svobodova Z.
(27) Stejskal V, Windham B, Fetal and
Developmental Effects of Mercury, 2001, www.flcv.com/fetaln.htm
(28) B. Windham,
Developmental Effects of Toxic Metals, 2002, www.myflcv.com/indexk.html ; (review
of over 200 peer-reviewed medical or Gov't studies)
(29) DAMS FAQ, The Environmental
Effects of Amalgam Affect Everyone, www.myflcv.com/damspr2f.htm l l
(30) U.S. Centers for Disease Control, National Center for Health
Statistics, NHANES III study(thousands of people's health monitored), www.vimy-dentistry.com/
(31) Christopher J. Kennedy, Uptake and accumulation of mercury from
dental amalgam in the common goldfish,Carassius auratus; Environmental Pollution, Volume 121, Issue 3, March 2003, Pages
321-326.
& Rudd JW, Furutani A, Turner MA.
Mercury methylation by fish
intestinal contents. Appl Environ Microbiol. 1980 Oct;40(4):777-82.
(32) Lindberg, S.E. . . . M.S. Landis, R.K. Stevens, et al.
2002. Dynamic oxidation of gaseous mercury in the arctic
troposphere at polar sunrise. Environmental Science and Technology
36(March 15):1245-1256; & Steding, D.J., and A.R.
Flegal. In press. Mercury
concentrations in coastal California precipitation: Evidence of local and
trans-Pacific fluxes of mercury to North America. Journal of Geophysical
Research 107(D24):4764. Abstract available at http://dx.doi.org/10.1029/2002JD002081
(33) Methylmercury fish
tissue residue criterion, United States Environmental Protection Agency, Office
of Water, 4304 EPA-823-F-01-001, January 2001,
www.epa.gov/waterscience/criteria/methylmercury/factsheet.html
(34)National Wildlife
Federation, Cycle of Harm: Mercury’s Pathway from Rain to Fish in the
Environment, May, 2003,
www.nwf.org/nwfwebadmin/binaryVault/CycleOfHarm111.pdf; & (b) NADP/Mercury Deposition Network, Total
Mercury Concentration, 2001; & Total Mercury Wet Deposition , 2001
(35) Agency
for Toxic Substances and Disease Registry, U.S. Public Health Service , Toxicological
Profile for Mercury",March 1999
(36) Press Release: U.S. FDA, Mercury Test Results for Albacore “white” tuna, Dec 9, 2003, U.S. Newswire, Washington, D.C. & (b) S. Gerstenberger et al, Univ. of Nevada, Environmental Toxicology & Chemistry, Feb 2010
(37) Pelagic Fisheries Conservation Program, www.tamug.edu/pelagic, www.galvnews.com/story.lasso?wcd=23901;
& Bioaccumulation of Mercury in Pelagic Fishes
of the Gulf of Mexico, http://www.tamug.edu/pelagic/Mercury-study.htm
********************