Mercury-Caused Endocrine Conditions Causing Widespread Adverse Health Effects

 B. Windham (Ed.)

 

I. Introduction.

As will be documented in this paper, the majority of the population receives significant mercury exposures and significant adverse health effects are common.  Mercury has been found to be an endocrine system disrupting chemical in animals and people, disrupting function of the pituitary gland, thyroid gland, parathyroid gland, thymus gland, adrenal gland, pineal gland, enzyme production processes, and affecting many hormonal and enzymatic functions at very low levels of exposure (5,12).  The main factors determining whether chronic conditions are induced by metals appear to be toxic exposure and  genetic susceptibility , which determines individual’s immune sensitivity and ability to detoxify metals (405).  Very low levels of exposure have been found to seriously affect large groups of individuals who are immune sensitive to toxic metals or have an inability to detoxify metals due to such as deficient sulfoxidation  or metallothionein function or other inhibited enzymatic processes related to detoxification or excretion of metals (5,12).  Dental amalgam  has been found to be the  largest source of mercury  in most people and includes methyl mercury since oral bacteria methylate mercury to methylmercury. Toxic metal exposures are common, and they often have additive or  synergistic  adverse effects. Most people with chronic conditions improve after proper toxic metal replacement [ in dental work and detoxification (32).

 

Everyone has toxic exposures and they are additive or synergistic , causing oxidative damage, neurological excitotoxicity, chronic inflammation, and endocrine system disruption (5,13)- factors in autoimmune disease. The liver, kidneys, skin, digestive system, and lungs all work together to rid our bodies of toxic substances, but sometimes they are overwhelmed by acute or cumulative exposures. 4 of the common factors causing autoimmune conditions that are commonly caused by toxic exposures are oxidative stress, endocrine disruption (5), dysbiosis, and genotoxicity. Some are more susceptible to chronic conditions due to genetic factors or past exposures or immune system status. Pesticides and toxic and endocrine-disrupting, and there is a strong link between Pesticides and autoimmune diseases . Millions of people are poisoned by pesticides each year (28), and millions of people are drinking water containing pesticides or pesticide degradates (28b). Studies have shown that farming with agricultural pesticides or herbicides or other chronic exposure to pesticides has been known to cause endocrine conditions such as   Celiac Disease , Diabetes , Sexual and Reproductive Problems , Developmental Problems ,   Lupus   , Parkinson's Disease ,   Alzheimer’s Disease , etc.   ,  

 

        Thyroid conditions are extremely common and adversely affect the health of millions of people, though most cases are undiagnosed (580,581). The thyroid gland secretes hormones which control the body’s metabolic rate, using iodine to create thyroid hormone.  So, iodine deficiency is a common cause of hypothyroid condition (395).  The hypothalamus secretes a hormone which triggers thyroid-stimulating hormone (TSH) from the pituitary gland to cause the thyroid gland to produce  thyryroxine  (T4) and triiodothyronine (T3) (produces mostly T4). T4 is then converted in the body to the active thyroid hormone T3.  A problem with any of these steps can cause hypothyroidism. As will be seen, toxic metal exposures such as mercury can accumulate and block or inhibit any of these necessary processes, as can other factors. The hypothalamus also controls hormone secretions by the pituitary gland. Mercury has been found to commonly accumulate in the hypothalamus (303), affecting hormone secretions of the pituitary or thyroid gland and many bodily functions.  Calcitonin is another hormone secreted by the thyroid gland that maintains blood calcium levels and prevents hypercalcemia and which can be affected.  

         Effects and Symptoms of Thyroid Deficiency : fatigue, nervousness, depression, increased allergies, cold sensitivity, skin problems, brittle nails, weight problems, constipation, infertility, memory problems, low immune function, carpal tunnel syndrome.  

Tests  for thyroid deficiency (580)): S tandard test is blood test for TSH level  (concentrations chronically above 2.0  mU /L indicate thyroid problem and cause long term health effects). 

Another sensitive thyroid function test is the  TRH stimulation test .  Another test is the  Achilles tendon reflex test.   A good home test is the  Barnes Basal Temperature Test  (put a thermometer in reach of bed, before getting up take temperature under arm shoulder joint (holding tight for at least 3 minutes).  Below 97.8 degrees indicates you are T3 deficient. Repeat several times. 

         Hashimoto�s thyroiditis is chronic inflammation of thyroid caused by an autoimmune reaction to environmental factors such as mercury or toxic metals or gluten sensitivity or milk casein sensitivity (which is commonly caused by toxic metals blocking enzymatic process needed to digest  gluten or milk casein ). (see later documentation) Thyroiditis is the most common thyroid condition (369).  Symptoms include weight gain, fatigue, constipation, dry hair, depression, joint and muscle pain, infertility and often increased cholesterol�and research indicates that it is seven times more common in women than in men (1).  It has been found that patients with AT and other autoimmune diseases, such as multiple sclerosis, psoriasis, systemic lupus erythematosus and atopic eczema, show increased lymphocyte reactivity in vitro to inorganic mercury, nickel and other metals compared to healthy controls. The important source of mercury is dental amalgam. Replacement of amalgam in mercury-allergic subjects resulted in improvement of health in about 70% of patients (369).

On the other end of the spectrum is Grave�s disease, marked by dangerously  increased  thyroid function (hyperthyroidism). Also, an autoimmune disorder, Grave�s disease results when your thyroid-stimulating antibodies begin to mimic thyroid-stimulating hormone boosting your thyroid hormone production as a result. Thus, many of its symptoms, such as rapid heartbeat, heat intolerance, weight loss and frequent bowel movements are opposite that of hypothyroidism. But like Hashimoto�s , women are also at significantly higher risk (4). 

        Other common hormone problems are related to the  adrenal glands .  The adrenal medulla manufactures epinephrine and norepinephrine (adrenaline and noradrenaline), the fight or flight hormones. Prolonged stress and anxiety commonly cause imbalances of these hormones, and also can be a factor in causing mercury to accumulate in the endocrine gland. Mercury tends to accumulate in body areas that are stressed or inflamed due to various factors (303). The adrenal cortex makes steroid hormones (cortisone, hydrocortisone, testosterone, estrogen, DHEA, pregnenolone, aldosterone,  androstenedrone , progesterone.  Some of these are also made in other parts of the body. The hormone aldosterone, together with the kidneys, regulates the balance of sodium and potassium in the body, which is commonly out of balance.  Mercury can accumulate in the adrenal gland and inhibit proper function of any of these hormones. Both mercury and stress commonly cause imbalances that result in adrenal fatigue, which is a factor in chronic fatigue (303)

        Besides imbalances of the various adrenal hormones that can cause effects, there are common chronic conditions that have been identified.   Addison�s Disease  is chronic adrenal failure, usually related to autoimmune attack on the adrenal glands, commonly caused by toxic exposures such as mercury (see more later).  It usually results in chronic  hypocortisolism , resulting in inability to properly deal with stress. This also affects blood pressure, insulin regulation, inflammatory response, and metabolism of proteins, carbohydrates, and fats. (580) Symptoms of Addison�s Disease include: skin changes such as dark tanning on scars, skin folds, toes, lips, elbows, knees, knuckles. 

Cushing�s  Syndrome  is overproduction of cortisol, usually related to tumor of pituitary or other organs.  It is also common caused by prescription drug effects of steroid hormones, etc. Symptoms include: stomach fat, thin extremities, moon face, buffalo hump, excessive hair growth, irregular menstrual periods, infertility. 

        Adrenal fatigue can be caused by chronic anxiety or stress, poor nutrition, toxic metal accumulation, etc. The adrenals can become depleted leading to fatigue, weakening of immune response, disrupted sugar metabolism, etc. (580) Environmental toxic exposure such as mercury can block or inhibit any of the adrenal hormone processes and contribute to such conditions.   

            

II. Common Exposures to Significant Levels of Mercury and Distribution in the Body

 

 Dental amalgam fillings have been documented to be the largest source of mercury in most people who have several amalgam fillings, and most people with several amalgam fillings get daily exposure of mercury at levels well above U.S. government health guidelines (16,19,20,49,199, 211,501) which amount to about 4 to 8 micrograms per day (217).  Mixed metals in the mouth such as amalgam dental fillings, metal crowns, and metal braces have been found to result in galvanic currents in the metals which drive the metals into the saliva and tissues of the oral cavity at high levels as well as systemically, with accumulations in the brain and hormonal glands (14,19,84,85,183,192,348,369, 381,500). Additionally, electric and electromagnetic fields from appliances, computer monitors, power lines, etc. cause electric currents in metals in the mouth which further increase exposures to mercury and other metals (28). Mercury and nickel, which are highly neurotoxic (19,84,217,372, 500) and  immunotoxic  (181,91,114ab,380b,369,383ab,405), are often found at high levels in tests of those with mixed metals in the mouth and are known to commonly cause DNA damage (296,458,114), immune reactivity (234,330,331,342,369,375, 383,405,91), and hormonal effects in animals and humans (13,50,84,104,105,369,382,459), including related reproductive effects.  Government health agencies in other countries such as Health Canada and amalgam manufacturers have warned against using amalgam near other metals (209,500), but this is still common in the U.S.  and several other countries.  Children typically also get high levels of exposure to highly toxic organic mercury compounds such as ethyl mercury through thimerosal, used as a preservative in vaccines (160,409,476,555), and to methyl mercury from fish (2).  Warnings  to ban or limit consumption of fish have been issued for over 30 percent of all U.S. lakes, including all Great Lakes, as well as U.S. river miles and bays (2).

A 2009 study found that inorganic mercury levels in women have been increasing rapidly in recent years (515). It used data from the U.S. Centers for Disease Control and Prevention National Health Nutrition Examination Survey (NHANES) finding that while inorganic mercury was detected in the blood of 2 percent of women aged 18 to 49 in the 1999-2000 NHANES survey, that level rose to 30 percent of women by 2005-2006.

 

Studies have documented that mercury causes hypothyroidism (50,84,390,392,407), damage of thyroid RNA (458), autoimmune thyroiditis (369,382,91), and impairment of conversion of thyroid T4 hormone to the active T3 form (13,369,382,390,392,407,50d). The thyroid gland has iodine binding sites where the iodine needed for its function is obtained.  For those with chronic mercury exposure the mercury occupies some of the iodine binding sites, blocking full utilization of iodine by the thyroid (394,395), in addition to the direct damage to the thyroid since mercury is highly cytotoxic (392,394,500, etc.).  These studies and clinical experience indicate that mercury and toxic metal exposures appear to be the most common cause of hypothyroidism and the majority treated by metals detoxification recover or significantly improve (503,303).  

The estimated prevalence of hypothyroidism from a large federal health survey, NHANES III, was 4.6%, but the incidence was twice as high for women as for men and many with sub clinical hypothyroidism are not aware of their condition(3a).  Another large study(3b) found that 11.7% tested had abnormal thyroid TSH levels with 9.5% being hypothyroid and 2.1% hyperthyroid.  According to survey tests, 8 to 10 % of untreated women were found to have thyroid imbalances so the actual level of hypothyroidism is higher than commonly recognized (508).  Even larger percentages of women had elevated levels of antithyroglobulin(anti-TG) or antithyroid peroxidase antibody(anti-TP). Tests have found approx. 30% of pregnant women to have low free T4 in the first trimester(509b).     

Thyroid hormones are of primary importance for the perinatal development of the central nervous system, and for normal function of the adult brain (10a). Hypothyroidism of the adults causes most frequently dementia and depression.  Nearly all the hyperthyroid patients show minor psychiatric signs, and sometimes psychosis, dementia, confusion state, depression, apathetic thyrotoxicosis, thyrotoxic crisis, seizures, pyramidal signs, or chorea occur(10a). These hormones primarily regulate the transcription of specific target genes. They increase the cortical serotonergic  neurotransmission, and  play an important role in regulating central noradrenergic and GABA function. 

 Studies indicate that slight thyroid deficiency/imbalance (sub clinical) during the perinatal period can result in delayed neuropsychological development in neonate and child or permanent neuropsychiatric damage in the developing fetus or autism or mental retardation (10,509,511). Low first trimester levels of free T4 and positive levels of anti-TP antibodies in the mother during pregnancy have been found to result in significantly reduced IQs (509a-e) and causes psychomotor deficits(509f). Women with the highest levels of thyroid-stimulating- hormone( TSH) and lowest free levels of thyroxin 17 weeks into their pregnancies were significantly more likely to have children who tested at least one standard deviation below normal on an IQ test taken at age 8(509a).  Based on study findings, maternal hypothyroidism appears to play a role in at least 15% of children whose IQs are more than 1 standard deviation below the mean, millions of children. Overt autoimmune thyroiditis is preceded by a rise in levels of thyroid peroxidase antibodies. "Collectively, reports show that 30-60% of women positive for TPO antibodies in pregnancy develop postpartum thyroiditis," the researchers point out (561,8), calling it "a strong association." Without treatment, many of the women with  thyroiditis  go  on to develop overt clinical hypothyroidism as they age and, eventually, associated complications such as cardiovascular disease. About 7.5% of pregnant women develop thyroiditis after  birth( 8).  Studies have also established a connection between maternal thyroid disease and babies born with heart defects(509h).  

Infants of women with hypothyroxinemia at 12 weeks' gestation had significantly lower scores on the Neonatal Behavioral Assessment Scale orientation index compared with subjects(10b). Regression analysis showed that first-trimester maternal free thyroid hormone T4 was a significant predictor of orientation scores. This study confirmed that maternal hypothyroxinemia constitutes a serious risk factor for neurodevelopmental difficulties that can be identified in neonates as young as 3 weeks of age.

 

     Mercury (especially mercury vapor from dental amalgam or organic mercury) rapidly crosses the blood brain barrier and is stored preferentially in the pituitary gland, thyroid gland,  hypothalamus, and occipital cortex in direct proportion to the number and extent of dental amalgam surfaces (14,19,85,99,273,274,407), and likewise rapidly crosses the placenta and accumulates in the fetus including the fetal brain and hormone glands at levels commonly higher than the level in the mother(20,22-27). Milk from mothers with 7 or more mercury amalgam dental fillings was found to have levels of mercury approximately 10 times that of amalgam free mothers(22b). The milk sampled ranged from 0.2 to 57 ug/L.  In a population of German women, the concentration of mercury in early breast milk ranged from 0.2 to 20.3 ug/L (26) . Cadmium and mercury was detected in 100% and lead in 87% of breast milk samples from Norwegian mothers (22d). Maternal seafood intake alone explained 10% of variance in mercury exposure, while together with amalgam fillings explained 46% of variance in Hg concentration in breast milk. For Hg concentration in breast milk, number of amalgam fillings and high fish consumption were significant predictors of mercury level (22).  A Japanese study found that the average mercury level in samples tested increased 60% between 1980 and 1990 [25]. The study found that prenatal Hg exposure is correlated with lower scores in neurodevelopmental screening, but more so in the linguistic pathway (25). The level of mercury in umbilical cord blood, meconium, and placenta is usually higher than that in mother's blood [23-25].  

 

        Alterations of cortical neuronal migration and cerebellar Purkinje cells have been observed in autism. Neuronal migration, via reelin regulation, requires triiodothyronine (T3) produced by deiodination of thyroxine (T4) by fetal brain deiodinases (407). Experimental animal models have shown that transient intrauterine deficits of thyroid hormones (as brief as 3 days) result in permanent alterations of cerebral cortical architecture reminiscent of those observed in brains of patients with autism. Early maternal hypothyroxinemia resulting in low T3 in the fetal brain during the period of neuronal cell migration (weeks 8-12 of pregnancy) may produce morphological brain changes leading to autism. Insufficient dietary iodine intake and a number of environmental antithyroid and goitrogenic agents such as mercury, soy, and peanuts can affect maternal thyroid function during pregnancy (395).

 

Mercury can have significant effects on thyroid function even though the main hormone levels remain in the normal range, so the usual thyroid tests are not adequate in such cases.   Prenatal methylmercury exposure severely affects the activity of selenoenzymes, including glutathione peroxidase ( GPx ) and 5-iodothyronine deiodinases (5-Di and 5'-DI) in the fetal brain, even though thyroxine(T4) levels are normal(390de). Another mechanism by which mercury exerts such effects is mercury�s effects on selenium levels which are required for conversion of T4 to T3(392,390d).  Gpx activity is severely inhibited, while 5-DI levels are decreased and 5'-DI increased in the fetal brain, similar to hypothyroidism.    Thus  normal thyroid tests will not pick up this condition.  

 

Mercury reduces the bloods ability to transport oxygen to fetus and transport of essential nutrients including amino acids, glucose, magnesium, zinc, selenium, and Vit B12 (43,96,198,263,264,338, 339,347,392,427); depresses enzyme  isocitric  dehydrogenase (ICD) in fetus, causes reduced iodine uptake, autoimmune thyroiditis, & hypothyroidism. (50,91,212,222,369,382,394,407,459,35).  Because of the evidence of widespread effects on infants, the American Assoc. of Clinical Endocrinologists advises that all women considering becoming pregnant should get a serum thyrotropin test so that hypothyroidism can be diagnosed and treated early(558,7b).   Since mercury and toxic metals are common causes of hypothyroidism, another test that should be considered is a hair element test for mercury or toxic metal exposures and essential mineral imbalances. 

 

 

       Studies have also established a clear association between the presence of thyroid antibodies and spontaneous abortions (511,13).  Levels of recurrent abortions in a population with positive levels of thyroid antibodies in one study were 40%, 5 times the normal rate (511).  Hypothyroidism is a well- documented risk factor in spontaneous abortions and infertility (9,511,13). Another study of pregnant women who suffer from hypothyroidism (underactive thyroid) found a four-times greater risk for miscarriage during the second trimester than those who do not (511), and women with untreated thyroid deficiency were four-times more likely to have a child with a developmental disabilities (509f-h,13) . Mercury through its effects on the endocrine system is also documented to cause other reproductive effects including infertility, low sperm counts, abnormal sperm, endometriosis, PMS, adverse effects on reproductive organs, etc. (5,9,12,13,50,104,105,390,500,559).  

Mercury blocks thyroid hormone production by occupying iodine binding sites and inhibiting hormone action even when the measured thyroid level appears to be in proper range (13,390,394,35). The thyroid and hypothalamus regulate body temperature and many metabolic processes including enzymatic processes that when inhibited result in higher dental decay (35). Mercury damage thus commonly results in poor bodily temperature control, in addition to many problems caused by hormonal imbalances such as depression.  Such hormonal secretions are affected at levels of mercury exposure much lower than the acute toxicity effects normally tested (50,390,84), as previously confirmed by hormonal/reproductive problems in animal populations (104,381c,50d).  Mercury also damages the blood brain barrier and facilitates penetration of the brain by other toxic metals and substances (311).   Hypothyroidism is also known to be a major factor in cardiovascular disease (510,509h,5,13).                             

 

 The pituitary gland controls many of the body endocrine system functions and secretes hormones that control most bodily processes, including the immune system and reproductive systems.  One study found mercury levels in the pituitary gland ranged from 6.3 to 77 ppb (85), while another (348) found the mean level to be 30ppb- levels found to be neurotoxic and cytotoxic in animal studies.  Some of the effect on depression is related to mercury effect of reducing the level of posterior pituitary hormone(oxytocin).   Low levels of pituitary function are associated with depression and suicidal  thoughts, and  appear to be a major factor in suicide of teenagers and other vulnerable groups. The pituitary glands of a group of dentists had 800 times more mercury than controls (99).  This may explain why dentists have much higher levels of emotional problems, depression, suicide, etc. (500, Section VIII.). A study by a neuroscience researcher found a connection between the levels of pituitary hormone lutropin and chronic mercury exposure (515). The authors indicated that inorganic mercury binding to luteinizing hormone can impair gonadotrophin regulation affecting fertility and reproductive function, as well as immune function and has been found to accumulate in the brain and stay there for years, which may help explain the mercury link to neurodegenerative disease.

 Amalgam fillings, nickel and gold crowns are major factors in reducing pituitary function (35,50,369, etc.).  Supplementary oxytocin extract has been found to alleviate many of these mood problems (35), along with replacement of metals in the mouth (107,500-Section VI.).  The normalization of pituitary function also often normalizes menstrual cycle problems, endometriosis, and increases fertility (35,9,500).

          Mercury accumulates in the adrenal gland and disrupts adrenal gland function (84,369,381). In general immune activation from toxics such as heavy metals resulting in cytokine release and abnormalities of the hypothalamus-pituitary-adrenal axis can cause changes in the brain, fatigue, and severe psychological symptoms (369,375,379-383,107) such as depression, profound fatigue,  muscoskeletal  pain, sleep disturbances, gastrointestinal and neurological problems as are seen in CFS, Fibromyalgia, and autoimmune thyroiditis. Such symptoms usually improve significantly after amalgam removal (503,303). Such hypersensitivity has been found most common in those with genetic predisposition to heavy metal sensitivity (342,369,375,382) such as found more frequently in patients with HLA-DRA antigens (375,381,383). A significant portion of the population appears to fall in this category and adrenal problems have been increasing significantly in recent years (570).                

Mercury (and other toxic metals) has been found to accumulate in the pineal gland and reduce melatonin levels, which is thought to be a significant factor in mercury�s toxic effects (569). Melatonin has found to have a significant protective action against methyl mercury toxicity, likely from antioxidative effect of melatonin on the MMC induced neurotoxicity (567). 

There is also evidence that mercury affects neurotransmitter levels which has effects on conditions like depression, mood disorders, ADHD, etc.  There is evidence that mercury can block the dopamine-beta-hydroxylase (DBH) enzyme (571). DBH is used to make the noradrenaline neurotransmitter and low noradrenaline can cause fatigue and depression. Mercury molecules can block all copper catalyzed dithiolane oxidases, such as coproporphyrin oxidase (260) and DBH.

Thyroid imbalances, which are documented to be commonly caused by mercury (369,382,459,35,50,91,212), have been found to play a major role in chronic heart conditions such as clogged arteries,  mycardial  infarction, and chronic heart failure (510).  In a recent study, published in the Annals of Internal Medicine, researchers reported that subclinical hypothyroidism is highly prevalent in elderly women and is strongly and independently associated with cardiac atherosclerosis and myocardial infarction(510c).  People who tested hypothyroid usually have significantly higher levels of homocysteine and cholesterol, which are documented factors in heart disease.  50% of those testing hypothyroid, also had high levels of homocysteine ( hyperhomocysteinenic ) and 90% were either  hyperhomocystemic  or hypercholesterolemic(510a). These are also known factors in developing arteriosclerotic vascular disease. Homocysteine levels are significantly increased in  hypothtyroidpatients and normalize with treatment(510efg).

 

 

The thymus gland plays a significant part in the establishment of the immune system and lymphatic system from the 12 th  week of gestation until puberty.   Inhibition of thymus function can thus affect proper development of the immune and lymphatic systems.  Lymphocyte differentiation, maturation and peripheral functions are affected by the thymic protein hormone  thymulin . Mercury at very low concentrations has been seen to impair some lymphocytic functions causing subclinical manifestations in exposed workers. Animal studies have shown mercury significantly inhibits  thymulinproduction at very low micromolar levels of exposure(513a). The metal allergens mercuric chloride and nickel sulfate were found to stimulate DNA synthesis of both immature and mature thymocytes at low levels of exposure, so chronic exposure can have long term effects(513b). Also, micromolar levels of mercuric ions specifically blocked synthesis of ribosomal RNA, causing fibrillarin relocation from the nucleolus to the nucleoplasm in epithelial cells as a consequence of the blockade of ribosomal RNA synthesis.  This appears to be a factor in deregulation of basic cellular events and in autoimmunity caused by mercury.     There were specific  immunotoxic  and biochemical alterations in lymphoid organs of mice treated at the lower doses of mercury. The immunological defects were consistent with altered T-cell function as evidenced by decreases in both T-cell mitogen and mixed leukocyte responses. Mercury caused increased immunoreactivity for glial fibrillary protein at 1  nanamole  (0.2 ppb) concentration, and microglial response at even lower levels (175).  There was a particular association between the T-cell defects and inhibition of thymic pyruvate kinase, the rate-limiting enzyme for glycolysis(513c).    Pyruvate and glycolysis problems are often seen in mercury toxic children being treated for  autism( 409).       


A direct mechanism involving mercury�s inhibition of hormones and cellular enzymatic processes by binding with the hydroxyl radical(SH) in amino acids appears to be a major part of the connection to allergic/immune reactive/autoimmune conditions such as autism/ADHD (409-411,439,464,468,476,5,33,160), schizophrenia(409,410), lupus (113,126,234,330,331,33,468), Scleroderma(468),   eczema and psoriasis (323,375,385,419,33), and allergies (271,313,330,331,369,375,468).  Mercury and other toxic metals also form inorganic compounds with OH, NH2, CL, in addition to the SH radical and thus inhibits many cellular enzyme processes, coenzymes, hormones, and blood cells (5,405,409,500,555). For example, mercury has been found to strongly inhibit the activity of  dipeptyl  peptidase (DPP IV) which is required in the digestion of the milk protein casein (411,412) as well as of xanthine oxidase (439). Studies involving a large sample of autistic and schizophrenic patients found that over 90 % of those tested had high levels of the neurotoxic milk protein beta-casomorphine-7 in their blood and urine and defective enzymatic processes for digesting milk protein (410).  Elimination of milk products from the diet has been found to improve the condition. Similar results have been seen in similarly but lesser affected patients with other pervasive developmental conditions such as ADHD.    Such populations have also been found to have many with high levels of mercury who recover after mercury detox (409,413,369,160). As mercury levels are reduced the protein binding is reduced and improvement in the enzymatic process occurs. Additional cellular level enzymatic effects of mercury�s binding with proteins include blockage of sulfur oxidation processes (33,114,194,330,331 ,412), enzymatic processes involving vitamins B6 and B12(418), effects on the cytochrome-C energy processes (43,84,338c,35), along with mercury�s adverse effects on cellular mineral levels of calcium, magnesium, zinc, and lithium (43,96,333,338,160,500). Thus some of the main mechanisms of toxic effects of metals include cytotoxicity; changes in cellular membrane permeability; inhibition of enzymes, coenzymes, and hormones; and generation of lipid peroxides or  free radicals- which result in neurotoxicity, immunotoxicity, impaired cellular respiration, gastrointestinal/metabolic effects, hormonal effects,  and immune reactivity or autoimmunity.   

 

       Mercury has been found to cause hormonal changes which cause hair loss and greying of hair.  In a large German study where 20,000 were tested, allergies and hair-loss were found to be 2-3 times as high in a group with large numbers of amalgam fillings compared to controls (199,9). Levels of mercury in follicular fluid was significantly higher for those with amalgam fillings (9,146). Based on this finding, a Gynecological Clinic that sees a large number of women suffering from alopecia/hair loss that was not responding to treatment had amalgams replaced in 132 women who had not responded to treatment. 68 % of the women then responded to treatment and alopecia was alleviated (187).  In other  studies  involving amalgam removal, the majority had significant improvement (40,317,503).  Higher levels of hormone disturbances, immune disturbances, infertility, and recurrent fungal infections were also found in the amalgam group (13). The results of hormone tests, cell culture studies, and intervention studies agree (9,146).  Other clinics have also found alleviation of hair loss/alopecia after amalgam removal and detox (40,317). Another study in Japan found significantly higher levels of mercury in gray hair than in dark hair (402).  

 

 III.  Treatment of thyroid conditions .  

         As previously documented, for those with amalgam fillings or toxic metal exposure amalgam replacement and detoxification usually bring about significant improvement in thyroid function, including thyroiditis.  

         Conventional treatment of hypothyroidism is Synthroid or  Unithroid  or  Levoxyl  (synthetic T4).  Clinical experience has found  Armour  Thyroid (desiccated thyroid gland of pig) and Cytomel (synthetic T3) and  Thyrolar  (synthetic T4/T3 mix) to often be more effective than the conventional treatments. (580) 

        Nutrient supplementation found by clinical experience to benefit hypothyroidism include complex vit B, vit C, E, A, CoQ10, L-Carnitine, and minerals magnesium, manganese, selenium, and zinc.  The B vitamins riboflavin and niacin act as cofactors in the production of your cellular energy (ATP) and in the conversion of iodide into iodine within your body(418b).  Studies show that supplementation with these B vitamins can reduce thyroid hormones (including T4 and T3)  without  inducing hypothyroidism or any of its negative symptoms(418b).  The amino acid L-Carnitine is essential to proper energy metabolism, and reduced levels may be behind the muscle weakness seen in patients with both underactive  and  overactive thyroids. Studies show, however, that once thyroid function is normalized, muscle carnitine levels and carnitine excretion in the urine  both  normalize in  response.( 580c).  Clinical research also reveals that L-carnitine supplementation can minimize even severe cases of hyperthyroidism.     Deficiencies of any of these can prevent conversion of T4 to T3 and should be corrected.  (580,581).  

         Iodine  is the primary mineral requirement for thyroid function and deficiency can cause hypothyroidism and other problems. It is found in kelp, seaweeds, sea salt, and iodized salt. S tatistics show that as our country�s median iodine intake has dropped, our risk of autoimmune disease has steadily risen(395b).  Clinical trials show that daily iodide supplementation can reduce levels of harmful antibodies in patients with Hashimoto�s  thyroiditis(395c).    Iodoral  is an iodine supplement that commonly cures or improves hypothyroidism. (395 ac)    Selenium  assists in removing toxins from the body and deficiency has been found to result in some cases of hypothyroidism.  Found in asparagus, grains, garlic, mushrooms- except the soil in some areas is deficient.  Tyrosine  is a necessary precursor of thyroid hormone and the neurotransmitters dopamine, norepinephrine, epinephrine.  A deficiency can lead to hypothyroidism and low adrenal function as well as mood disorders.  DHEA   is  a hormone that affects other hormone levels and metabolic function and is commonly found low in hypothyroidism. Levels can be  determined  by  blood test.  Raw cabbage, cauliflower, or turnips contain low levels of goitrogens, though cooking inactivates them.  (580)

 

        Natural treatments for adrenal fatigue include vit C (3 gm/day),DHEA (50 gm/day) L-theanine (100-400 mg/day, vit B5 (1500 mg/day), Phosphatidylserine (300 mg/day), Licorice (no more than 1000 mg), Melatonin (300 mcg to 6 mg at bedtime). Limit processed foods, alcohol, smoking.    (580) 

        Natural treatments of Addison s Disease or  hypocortisolism  includes DHEA, Licorice, pantothenic acid (B5), and L-Theanine (green tea extract).  A physician should be consulted to test for DHEA levels and high doses of licorice should be used long term only under care of a doctor.   DHEA deficiency is common in the aging population, and chronic conditions like Addison s make this more likely.  Clinical studies found significant benefit in the majority. Licorice helps to break down the amount of hydrocortisone broken down by the liver, reducing the workload of the adrenal glands.  Vit B5 activates the adrenal glands.   L-Theanine works by increasing GABA levels, which helps modulate stress and mood. (580) 

        Natural treatments for  Cushing s Syndrome that have demonstrated benefits include DHEA, Vit C, Phosphatidylserine (PS), and Melatonin (nightly) (580).  

        

References

(1)Hashimoto’s Thyroiditis (Lymphocytic Thyroiditis); American Thyroid Assoc .

Bindra  A, Braunstein GD. Thyroiditis. American Family Physician. 2006;73(10):1769-76

 

(2) United States  Environmental Protection  Agency,    Office of Water, November 2020,

Fish and Shellfish Advisories and Safe Eating Guidelines, https://www.epa.gov/choose-fish-and-shellfish-wisely/fish-and-shellfish-advisories-and-safe-eating-guidelines ;  & U.S. FDA, Advice about Eating Fish- For Women Who Are or Might Become Pregnant, Breastfeeding Mothers, and Young Children, 2020, https://www.fda.gov/food/consumers/advice-about-eating-fish ; & The Conference of New England Govenors and Eastern Canadian Premiers,  New England Governors/ Eastern Canadian Premiers Mercury Action Plan- 1998;   http://www.cmp.ca/neg/reports/mercury.htm#anchor1  ;

(3) The Third National Health and Nutrition Examination Survey (NHANES III) 

(4 Graves’ Disease & Thyroid Foundation, https://rarediseases.org/organizations/graves-disease-thyroid-foundation/

(5) Dyer C.A. (2007) Heavy Metals as Endocrine-Disrupting Chemicals. In: Gore A.C. (eds) Endocrine-Disrupting Chemicals. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/1-59745-107-X_5 ; & (b) Environmental Mercury and Its Toxic Effects, J Prev Med Public Health.   2014 Mar; 47(2): 74–83. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988285/ ; & (31) Toxic Metals, Pesticides, Herbicides, and Other Endocrine-Disrupting Chemicals, www.myflcv.com/endoTM.html;& (b) & Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement , Endocr Rev.   2009 Jun; 30(4): 293–342. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2726844/ ; T he mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor γ, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems;   Endocrine Disruption- Pesticides & Herbicides- Beyond Pesticides Database-

& (c) Estrogenicity of pyrethroid pesticides . J Toxicol Environ Health A. 2002 Oct 11;65(19):1419-35. Chen H, Wang X.,

 

(6) The study of the prevalence of depressive disorders in primary care patients in Poland], Wiad Lek.2007;60(3-4):109-13. Dr�zdz W, Wojnar M, Araszkiewicz A, Nawacka-Pawlaczyk D, Urbański R, Cwiklińska-Jurkowska M, Rybakowski J

(7) Thyroid malfunction in women;   Ginecol   Obstet  Mex. 2001 May;69: 200-5,  Z�rate  A,  Basurto  L, Hern�ndez M; & (b) Clinical controversies in screening women for thyroid disorders during pregnancy. Wier FA, Farley CL.  J Midwifery  Womens  Health. 2006 May-Jun;51(3):152-8.

(8) Postpartum thyroiditis.  Best  Pract  Res Clin Endocrinol  Metab . 2004 Jun;18(2):303-16.  Stagnaro -Green A; & Recognizing, understanding, and treating postpartum thyroiditis. Endocrinol  Metab  Clin North Am. 2000 Jun;29(2):417-30, ix.  Stagnaro -Green A; & (b) Postpartum depression and thyroid antibody status.  Thyroid. 1999 Jul;9(7):699-703, Harris B.

(9)(a)  Dr.I.Gerhard , Dr.  E.Roller,et  al, Tubingen Univ. Gynecological Clinic,  Heidelberg,1996;   & (b)Gerhard I, Monga B,  Waldbrenner  A,  Runnebaum  B  Heavy Metals and Fertility, J of Toxicology and Environmental  Health,Part  A, 54(8):593-611, 1998; & (c) Gerhard I, Waibel S, Daniel V,  Runnebaum  B   Impact of heavy metals on hormonal and immunological factors in women with repeated miscarriages, Hum  Reprod  Update 1998 May;4(3):301‑309; & (d) Gerhard I, Ganzheitiche Diagnostik un Therapie bie Infertilitat,Erfahrungsheilkunde,1993, 42(3): 100-106; & (e)Hormonal conditions affecting women caused by environmental poisons in  Pravention , Diagnose und  Therapie  von  Umwelterkrankungen , JD Kruse- Jarres (Ed.), 1993, p51-68; & (f) Gerhard I,  Waldbrenner  P,  Thuro  H,  Runnebaum  B, Diagnosis of heavy metal loading by the oral DMPS and chewing gum tests.  Klinisches  Labor 1992, 38:404-411.   

(10) Some neurologic and psychiatric complications in endocrine disorders: the thyroid gland, [Article in Hungarian]  Aszal�s  Z. Orv  Hetil . 2007 Feb 18;148(7):303-10; &(b) Neonatal effects of maternal hypothyroxinemia during early pregnancy.  Pediatrics. 2006 Jan;117(1):161-7.  Kooistra  L, Crawford S, van  Baar  AL, Brouwers EP, Pop VJ; & (c) Hypothyroidism and pregnancy: impact on mother and child health.]  Ann Biol Clin (Paris). 2008 Jan 29;66(1):43-51, [Article in French],  Menif  O, Omar S,  Feki  M,  Kaabachi  N.

(11) Neuropsychiatric aspects of hypothyroidism and treatment reversibility. Minerva Endocrine. 2007 Mar;32(1):49-65, Davis JD, Tremont G; & (b) Subclinical hypothyroidism: psychiatric disorders and symptoms. Rev Bras  Psiquiatr . 2007 Jun;29(2):157-9, Almeida C,  Brasil  MA, Costa AJ et al. 

(12) Exposure to endocrine disruptors during adulthood: consequences for female fertility , Journal of Endocrinology, Vol 233, Issue 3, June 2017 ; & (b) Negative impact of endocrine-disrupting compounds on human reproductive health, Reproduction, Fertility and Development   23(3) 403-416 https://doi.org/10.1071/RD09300

( 13) Mercury   exposure and its effects on fertility and pregnancy outcomes. Basic Clin Pharmacol Toxicol .   2019   May 28. Bjorklund G, Aaseth J, et al

(14) (a) Mercury accumulation in tissues from dental staff and controls in relation to exposure.  Nylander M, Friberg L, Eggleston D,  Bj�rkman  L.   Swed  Dent J. 1989;13(6):235-43; & (b) Mercury burden of human fetal and infant tissues.   Drasch  G, Schupp I,  H�fl  H, Reinke R,  Roider  G.   Eur J  Pediatr . 1994 Aug;153(8):607-10; & ( c )  Dental amalgam and mercury levels in autopsy tissues: food for thought.     Guzzi  G,  Grandi   M,   Severi  G et al.   Am J Forensic Med  Pathol . 2006 Mar;27(1):42-5                              

(15)

(16) Lichtenberg H, "Mercury vapor in the oral cavity in relation to number of amalgam surfaces and the classic symptoms of chronic mercury poisoning", J  Orthomol  Med (1996), v11, n.2, 87-94           http://www.lichtenberg.dk/symptoms_before_and_after_proper.htm

(19)(a) Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study. Environ Health. 2007 Oct  11;6:30Bj�rkman  L,  Lundekvam  BF,  Vahter  M et al, & (b)  Matts Hanson. Dept  of  Zoophysiology ,   University of Lund, Sweden.  �Amalgam hazards in your teeth�,  J. Orthomolecular Psychiatry 1983; 2(3): 194-201;               http://www.health-n-energy.com/ARTICLES/mercfill.htm


(20)(a) Maternal ‑Fetal Distribution of Mercury Released From Dental Amalgam Fillings. Dept of Medicine and  Medical  Physiology  , faculty of Medicine, Univ. of Calgary, Calgary Alberta Canada,  Amer.J.Physiol.,1990,  258:R939-945, Vimy  MJ,  Takahashi,YLorscheider  FL; & (b) Distribution of mercury released from  amalgam fillings into monkey tissues, FASEB J.,1990, 4:5536 , Hahn LJ, Vimy MJ, Lorscheider  FL.              

21. Toxic effects of metals in:  Caserett  and  Doulls   Toxicology-  TheBasic  Science of Poisons , McGraw-Hill Inc., N.Y., 1993, R.A.Goyer ,; &(b) Goodman, Gillman, The Pharmacological Basis of Therapeutics, Mac Millan Publishing Company, N.Y. 1985; &(c) Encyclopedia of Occupational Health and Safety, International  Labour  Office, Geneva, Vol 2, 3rd Edition.  

22.  Mercury in breast milk in relation to fish consumption and amalgam.  Arch Environ Health, 1996,51(3):234‑41 Oskarsson  A, Lagerkvist BJ.; & (b)  Drasch  G, Lipowsky  G. Mercury in human colostrum and early breast milk.  J Trace Elem Med Biol 1998; 12:23‑27; &(c)  Paccagnella  B,  Riolfatti  M.  Total mercury levels in human milk from Italian mothers. Ann Ig 1989: 1(3-4):661-71; & (d) Concentration of mercury, cadmium, and lead in breast milk from Norwegian mothers: Association with dietary habits, amalgam and other factors, Science of the Total Environment , Volume 677 , 10 August 2019, Pages 466-473.

 

23. Maternal‑fetal transfer of metallic mercury via placenta and milk. Ann Clin Lab Sci 1997; 27(2):135‑141, Yang J, Wu XD.; & (b) Soong YK, Tseng R, Liu C, Lin PW.  J of Formosa Medical Assoc 1991; 90(1): 59‑65; & (c) Sundberg J, Ersson  B,  Oskarsson  A.   Protein binding of mercury in milk and plasma from mice and man‑‑a comparison between methylmercury and inorganic mercury. Toxicology 1999 Oct 1;137(3):169‑84.  

24. Comparison of mercury levels in maternal blood, fetal blood, fetal cord blood, and placental tissues. Am J  Obstet   Gynecol , 1981, 139(2): 209-13, Kuhnert PM, Erhard P.   & "Longitudinal study of methylmercury and inorganic mercury in blood and urine of pregnant and lactatingwomen, as well as in umbilical cord blood", Environ Res 2000 Oct;84(2):186-94, Vahter  M,  Akesson   A,Berglund  M, ; & Maternal and cord blood mercury background levels; a longitudinal surveillance. Am J  Obstet  and  Gynecol  1982; 143(4): 440‑443.

25. Ramirez GB, Cruz MC,  Pagulayan  O, Ostrea E, Dalisay C.  The Tagum study I: analysis and clinical correlates of mercury in maternal and cord blood, breast milk, meconium, and infants' hair.   Pediatrics 2000 Oct;106(4):774‑81; & (b) Ramirez GB,  Pagulayan  O, Akagi H, Francisco Rivera A, Lee LV,  Berroya  A, Vince Cruz MC,  Casintahan  D.  Tagum study II: follow-up study at two years of age after prenatal exposure to mercury.  Pediatrics. 2003 Mar;111(3 ):e 289-95; &(c)   Warfvinge  K, Berlin M,  Logdberg  B.  The effect on pregnancy outcome and fetal brain development of prenatal exposure to mercury  vapour . Neurotoxicology 1994; 15(4).

26. Drexler H, Schaller KH.  The mercury concentration in breast milk resulting from amalgam fillings and dietary habits.  Environ Res 1998; 77(2): 124-9.

27.   Health Risks from Increases in Methylmercury Exposure, Health Perspect1985; 63: 133‑140, Mottet  NK, Shaw CM,  BurbacherTM,; & (b)  P.Grandjean  et al, MeHg  and neurotoxicity in children, Am J Epidemiol, 1999; & Sorensen N, et al; Prenatal mercury exposure raises blood pressure, Epidemiology 1999, 10:370-375; &  Grandjean P;

28. The global distribution of acute unintentional pesticide poisoning: estimations based on a systematic review, Boedeker , W., Clausing , P.   et al.   BMC Public Health   20,  1875 (2020). https://doi.org/10.1186/s12889-020-09939-0 ; & (b) Pesticides and Pesticide Degradates in Groundwater Used for Public Supply across the United States : Occurrence and Human-Health Context , Environ. Sci. Technol.   2021 , 55 , 1 , 362– ; & (c) Beyond Pesticides Database

32. Detoxification: Heavy Metals Testing and Chelation Therapy-Lyn Patrick, ND (DMSA for challenge test & chelation or MCP ) - https://cdn.simplecast.com/audio/4ed1adc9-1b56-4d5d-a2fb-9106997393d4/episodes/6c148e92-bf66-424f-9431-e1a01dbf870d/audio/8773d9e9-9e26-4b2f-aec6-a2004e921e66/default_tc.mp3?aid=rss_feed&feed=1NYUFSRI

& (b) Take Charge of Your Health (Testing & Chelation of Heavy Metals) - Dr. Chris Shade - CEO of Quicksilver Scientific https://s115.podbean.com/pb/1860a0ddeed2ad45db31477355f265e8/60103875/data1/fs48/6936790/uploads/Take_Charge_1218208ati1.mp3?pbss=f02615a5-91d0-5c11-8e0e-81cca9f7c721 ; & (c) The Long-Term Algae Extract ( Chlorella and Fucus sp ) and Aminosulphurate Supplementation Modulate SOD-1 Activity and Decrease Heavy Metals (Hg ++ , Sn) Levels in Patients with Long-Term Dental Titanium Implants and   Amalgam- Fillings Restorations. Antioxidants (Basel).   2019   Apr 16;8(4). Merino JJ ; & (d )   N -acetyl-cysteine affords protection against lead-induced cytotoxicity and oxidative stress in human liver carcinoma (HepG 2 ) cells. Int J Environ Res Public Health 4:132_137,  Yedjou  GC,  TchounwouPB (2008) 

33. (a) "Heavy metals ( Hg,Cd ) inhibit the activity of the liver and kidney sulfate transporter Sat 1”, Toxicol Appl Pharmacol , 1999,154(2):181‑7, Markovich et al; & (b) Xenobiotic metabolism and adverse environmental response: sulfur-dependent detox pathways,Toxicology , 1996, 111(1-3):43-65, A. McFadden; & (c)   SO2: a potent glutathion  depleting agent, Comp Biochem Physiol Pharmocol, Toxicol Endocrinol, 114(2):89-98, S.C. Langley-Evans et al,; & (d)Alberti A,  Pirrone  P, Elia M, Waring RH, Romano C. Sulphation deficit in low-functioning autistic children. Biol Psychiatry 1999, 46(3):420-4.

35.    Uniformed Consent: the hidden dangers in dental care , 1999, Hampton Roads Publishing Company Inc; Huggins HA, Levy, TE &  Hal Huggins,  Its  All in Your Head,  1997; & Center for Progressive Medicine, 1999,  www.hugnet.com

38.    Sensitization to inorganic mercury could be a risk factor for infertility, Podzimek S, Prochazkova J, Bultasova L, Bartova J, Ulcova-Gallova Z, Mrklas L, Stejskal VD.  Neuro Endocrinol Lett. 2005 Aug;26(4):277-82; &  S.Ziff  and  M.Ziff ,   Infertility and Birth Defects: Is Mercury from Dental Fillings a Hidden Cause?,  Bio-Probe, Inc. ISBN: 0-941011-03-8.1987

( 40)Amalgamtherape ,in  Kompendiu der Regulationspathologie und  Therapie , Sonntag-Verlag, 1990, F.Perger ; & Belastungen   durch   toxische   Schwermetalle , 1993, 87(2): 157-63;   &  HomoopathischeBehandlung  der  Amalgamvergiftung

           AllgHomoopathische  Z, 241(5); 184-187, K. H.Friese , &  Erfahrungsheikunde , 1996, (4): 251-253; & Amalgamvergiftung_moglicher Der Naturazt,1995,135(8):13-15; & Schnupfen -Was tun?,  Therapeutikon , 1994, 8(3): 62-68;

(43) (a) Superoxide‑induced stimulation of protein kinase C

via thiol modification and modulation of zinc content. J Biol Chem

2000 May 22, Knapp LT;  Klann  E.; & (b) Modulation of protein kinase

C by heavy metals, Toxicol  Lett, 1995, 81(2-3):197-203. B.Rajanna  et al,

(49)  Mercury concentrations in urine and blood associated with amalgam exposure in the U.S. military population, Dent Res, 1998, 77(3):461-71. A. Kingman et al, National Institute of Dental Research,

(50) "Effect of Mercury on Glutathione and Thyroid Hormones" Bulletin of Environmental Contamination and Toxicology 44(4):616-622 (1990), Sin YM, Reddy PK; & (b) Effects of inorganic and methyl mercury on thyroidal function, J  Pharmacobiodyn , 1980, 3(3):149-59, J.Kawada  et al; & (c)  Thyrotoxicity of cadmium and mercury.  Biomed Environ Sci 1992, 5(3): 236-40, Ghosh N; &(d) The Effect of Mercuric Chloride on Thyroid Function of the Rat,  Toxicol  and Applied Pharm 1979, 48: 49-55, Goldman, Blackburn; &(e) "Chronic effects of methylmercury on the urinary excretion of catecholamines and their responses to hypoglycemic stress" Arch  Toxicol  65(2):164-7 (1991), Kabuto M;

 (61) (a) Concentrations of mercury in brain and kidney of fetuses and infants, Journal of Trace Elements in Medicine and Biology, 1996,10:61-67, E.Lutz  et al; & (b) Mercury Burden of Human Fetal and Infant Tissues, Eur J  Pediatr  153:607-610, 1994; G. Drasch  et al                                     

(84) (a) J.C.Veltman  et al, Alterations of heme, cytochrome P-450, and steroid metabolism by mercury in rat adrenal gland, Arch  Biochem   Biophys , 1986, 248(2):467-78; &(b)  A.G.Riedl  et al, Neurodegenerative Disease Research Center, King�s College, UK, P450 and  hemeoxygenase  enzymes in the basal ganglia and their role in Parkinson�s disease, Adv Neurol, 1999; 80:271-86; &(c) Alfred V.  Zamm . Dental Mercury: A Factor that Aggravates and Induces Xenobiotic Intolerance.  J.  Orthmol . Med. v6#2 pp67-77 (1991); & (d) Nishida M, Muraoka K, et al, Differential effects of  methylmercuric  chloride and mercuric chloride on the histochemistry of rat thyroid peroxidase and the thyroid peroxidase activity of isolated pig thyroid cells. J  HistochemCytochem . 1989 May;37(5):723-7; & (e) Khayat A,  Dencker  L.  Whole body and liver distribution of inhaled mercury vapor in the mouse: influence of ethanol and  aminotriazole  pretreatment. J Appl  Toxicol . 1983 Apr;3(2):66-74.    

(85) Weiner JA, Nylander M; The relationship between mercury concentration in human organs and different predictor variables.    Sci Total Environ 1993 Sep 30;138(1‑3):101‑ 15 ;    & (b) Falnoga  I,  Tusek-Znidaric  M, Horvat M,  StegnarP .  Mercury, selenium, and cadmium in human autopsy samples from Idrija residents and mercury mine workers.  Environ Res. 2000 Nov;84(3):211-8

(91)     B.Lindqvist  et al, "Effects of removing amalgam fillings from patients with diseases affecting the immune         

system", Med Sci Res 24(5): 355-356, 1996.                                      

(96)  A.F.Goldberg  et al, Effect of Amalgam restorations on whole body potassium and bone mineral content in older men, Gen Dent,   1996, 44(3): 246-8; & (b) K.Schirrmacher,1998, Effects of lead, mercury, and methyl mercury on gap junctions and [Ca2+]I in bone cells,  Calcif  Tissue Int 1998 Aug;63(2):134‑9.          

(99)    M. Nylander et al, Mercury accumulation in tissues from dental staff  and  controls �, Swedish Dental Journal, 13:235-243, 1989; &     (b) Nylander M, Mercury in pituitary glands of dentists, Lancet,442, Feb 26, 1986.

(104)  (a) C.F.Facemire  et al, Reproductive impairment in the Florida Panther, Health Perspect,1995, 103 (Supp4):79-86; &(b)Yang JM, Jiang XZ, Chen QY, Li PJ, Zhou YF, Wang YL.  , The distribution of HgCl2 in rat body and its effect on fetus, Environ Sci , 1996, 9(4): 437-42; & (c)  M.Maretta  et al, Effect of mercury on the epithelium of the fowl testis, Vet Hung 1995, 43(1):153-6.                            

(105)  (a) T.Colborn (Ed.), Chemically Induced Alterations in Functional Development ,    Princeton Scientific Press,1992;     &(b)  Colborn  T, Developmental Effects of Endocrine-Disrupting  Chemicals",Environ  Heath Perspectives, V 101, No.5, Oct 1993; & (c) B.Windham , "Health, Hormonal, and Reproductive Effects of Endocrine Disrupting Chemicals" (including mercury),   Annotated Bibliography ,2000; &(d)  Giwercman  A, Carlsen E,  KeidingNSkakkabaek  NE, Evidence for increasing incidence of abnormalities of the human testis: a review.   Environ Health  Perspect  1993; 101  Suppl( 2): 65-71.

(107)   R. L.Siblerud  et  al,Psychometric  evidence that mercury from dental fillings may be a factor in  depression,anger,and  anxiety", Psychol Rep,  v74,n1,1994;  & Amer. J. Of Psychotherapy, 1989; 58: 575-87;  Poisoning and Toxicology compendiumLeikin  &  Palouchek , Lexi-Comp,1998, p705.           

(113) (a) T. A.Glavinskiaia  et al, Complexons  in the treatment of  lupus  erghematousus , Dermatol  Venerol , 1980, 12: 24-28; & (b) A.F.Hall , Arch Dermatol 47, 1943, 610-611; &  Panasiuk  J , Peripheral blood lymphocyte transformation test in various skin diseases of allergic origin. (nickel &  lupus)   Przegl  Dermatol 1980;67(6):823‑9 [Article in Polish] ; &  S Moore,  Lupus: Alternative Therapies That Work; www.shirleys‑wellness‑cafe.com/amalgam.htm    

(114)  ( a) M.Aschner  et al, Metallothionein induction in fetal rat brain by in utero exposure to elemental mercury

                   vapor, Brain Research, 1997, dec 5, 778(1):222-32; & (b) O�Halloran TV, Transition metals in control

Of gene expression, Science, 1993, 261(5122):715-25; & (c)Matts RL, Schatz JR, Hurst R,  Kagen  R.   Toxic heavy metal ions inhibit reduction of disulfide bonds.  J Biol Chem 1991; 266(19): 12695-702; & (d) Boot JH.  Effects of SH-blocking compounds on the energy metabolism in isolated rat hepatocytes.  Cell Struct  Funct  1995; 20(3): 233-8. 

(122)    B.Ono  et al, Reduced tyrosine uptake in strains sensitive to inorganic mercury, Genet, 1987,11(5):399-

(126)  Noda M,  Wataha  JC, Lockwood PE, Volkmann KR,  Kaga  M, Sano H.  Sublethal, 2-week exposures of dental material components alter TNF-alpha secretion of THP-1 monocytes Dent Mater. 2003;19(2):101-5; & Kim SH, Johnson VJ, Sharma RP.    Mercury inhibits nitric oxide production but activates proinflammatory cytokine expression in murine macrophage: differential modulation of NF-  kappaB  and p38 MAPK signaling pathways. Nitric Oxide. 2002 Aug;7(1):67-74; & Chen L,  Nordlind  K, Liden S,  Sticherling  M., Increased expression of keratinocyte interleukin-8 in human contact eczematous reactions to heavy metals.  APMIS.1996 Jul-Aug;104(7-8):509-14; & &  Feighery  L, Collins C,  Feighery  C, Mahmud N, Coughlan G, Willoughby R, Jackson J. Anti-transglutaminase antibodies and the serological diagnosis of coeliac disease.  Br J Biomed Sci. 2003;60(1):14-8.

(146) (a) Gerhard I,  Runnebaum   B,  The  limits of hormone substitution in pollutant exposure and fertility disorders   Zentralbl   Gynakol , 1992, 114, 593-602: &(b)Gerhard, I.:  Fortpflanzungsstrungen   durch   UmweltgifteTherapeutikon  7, 478‑491 (1993) .;  & (c)Roller, E.,  Vallon , U. und  Cl�don , Ph.:  Einflu  von  Schwermetallen  auf die  Progesteronsynthese  von Leydig‑ Zellen . J Fert  Reprod  3, 33 (1995).   &(d)  Vallon  U, Roller  E,  und   Cl�don , Ph.: Schwermetallionen beeinflussen die Progesteronsynthese von humanen Granulosazellen bei IVF‑Patientinnen: Anwendung eines alternativen in‑vitro‑Zytotoxizit�tstests. J Fert  Reprod  3, 31 (1995).

(160)  B. Windham, Cognitive and Behavioral Effects of Toxic Metals, 2018. (over 200 medical study references)  www.myflcv.com/tmlbn.html     

(175)  Monnet-Tschudi  F,  Zurich  MG,  Honegger  P. Comparison of the developmental effects of two mercury compounds on glial cells and neurons in aggregate cultures of  rat  telencephalon .   Brain Res. 1996 Nov 25;741(1-2):52-9. 

(181) Mathieson PW, Mercury: god of TH2 cells,1995, Clinical Exp Immunol.,102(2):229-30; &  Heo  Y, Parsons PJ, Lawrence DA, Lead differentially modifies cytokine production in vitro and in vivo.   Toxicol  Appl  Pharmacol , 196; 138:149-57; & Murdoch RD, Pepys J; Enhancement of antibody and  IgE  production by mercury and platinum salts. Int Arch Allergy Appl Immunol 1986 80: 405-11.

(183) World Health Organization (WHO),1991, Environmental Health Criteria 118, Inorganic Mercury, WHO, Geneva, Switzerland. 

(187)  (a) Klobusch  J, Rabe T, Gerhard I,   Runnebaum  B, "Alopecia and environmental pollution"  Klinisches  Labor 1992, 38:469‑ 476; & (b) Schwermetallbelastungen   bei   Patientinnen   mit   Alopezie Arch Gynecol. Obstet., 1993,254(1-4):278-80;& (c)G.  Kunzel  et al, Arch Gynecol. Obstet., 1993, 254:277-8; &  Schrallhammer-Benkler  K, et al,   Acute  mercury intoxication with lichenoid drug eruption followed by mercury contact allergy and development of antinuclear antibodies. Acta  Derm   Venereol . 1992 Aug;72(4):294-6.    

(192)  (a) N.Nogi , Electric current around dental metals as a factor producing allergic metal ions in the oral cavity, Nippon  Hifuka  Gakkai  Zasshi , 1989, 99(12):1243-54;  & J. Bergdahl,  A.J.Certosimo  et al, National Naval Dental Center, Oral Electricity, Gen Dent, 1996, 44(4):324-6; &  B.M.Owens  et al, Localized galvanic shock after insertion of an amalgam restoration, Compendium, 1993, 14(10),1302,1304,1306-7  & (b) M.D.Rose  et al, Eastman Dental Institute, The tarnished history of a  posteria  restoration, Br Dent J 1998;185(9):436;&     &  R.D.Meyer  et al, Intraoral galvanic corrosion,Prosthet  Dent, 1993,69(2):141-3   R.H.Ogletree  et al, School of Materials Science, GIT,  Atlanta,Effect  of mercury on corrosion of eta Cu-Sn phase in dental amalgams, Dent Mater, 1995, 11(5):332-6; &(c) Johansson E,  Liliefors  T, "Heavy elements in root tips from teeth with  amalgam fillings", Department of Radiation Sciences, Division of Physical Biology, Box 535, 751 21 Uppsala, Sweden

(198)  B.R. G.Danielsson  et al,Ferotoxicity  of inorganic mercury: distribution and effects of nutrient uptake by placenta and fetus, Biol Res  Preg  Perinatal. 5(3):102-109,1984; &   Danielsson et al,  NeurotoxicolTeratol .,  18 :129-134

(199)  Dr.  P.Kraub  & M.Deyhle, Universitat Tubingen- Institut fur Organische Chemie, Field Study on the Mercury Content of Saliva, 1997   http://www.uni‑tuebingen.de/KRAUSS/amalgam.html;  

(20,000 people tested for mercury level in saliva and health status/symptoms compiled)

(211)  Mercury from maternal "silver" tooth fillings in sheep and human breast milk. A source of neonatal exposure.   Vimy  MJ, Hooper DE, King WW,  Lorscheider  FL.   Biol Trace Elem Res. 1997 Feb;56(2):143-52; & Maternal-fetal distribution of mercury (203Hg) released from dental amalgam fillings.  Vimy  MJ, Takahashi Y,  Lorscheider  FL.  Am J Physiol. 1990 Apr;258(4 Pt 2 ):R 939-45; &  R.Schiele  et al, Institute of Occupational Medicine, Univ. Of  Erlamgem - Nurnberg, Studies of organ mercury content related to number of amalgam fillings, Symposium paper, March 12, 1984, Cologne, Germany; (in 38);

 (217) Agency for Toxic Substances and Disease Registry, U.S. Public Health   Service,  Toxicological Profile for Mercury  ,1999; & (b)Apr 19,1999 Media Advisory, New MRLs for toxic substances,  MRL:elemental  mercury vapor/inhalation/chronic & MRL:   methyl mercury/ oral/acute; & http://www.atsdr.cdc.gov/mrls.html

(234)  P.E.  Bigazzi , Autoimmunity and Heavy Metals, Lupus, 1994; 3: 449-453;(b) & Pollard KM, Pearson Dl,  HultmanP .  Lupus-prone mice as model to study xenobiotic-induced autoimmunity.  Environ Health  Perspect  1999; 107(Suppl 5): 729-735; &(c) Nielsen JB;  Hultman  P.  Experimental studies on genetically determined susceptibility to mercury‑induced autoimmune response.   Ren Fail 1999 May‑Jul;21(3‑4):343‑8; &(d)  Hultman  P,  Enestrom  S, Mercury induced antinuclear antibodies in mice, Clinical and  Exper  Immunology, 1988, 71(2): 269-274.

(260) J.S. Woods et al, Urinary porphyrin profiles as biomarker of mercury exposure: studies on dentists, J  ToxicolEnviron Health, 40(2-3):1993, p235-; & Altered porphyrin metabolites as a biomarker of mercury exposure and toxicity,  Physiol  Pharmocol, 1996,74(2):210-15

(263)     Kumar AR,  Kurup  PA.  Inhibition of membrane Na+-K+ ATPase activity: a common pathway in central nervous system disorders.  J Assoc Physicians India. 2002  Mar;50:400 -6

(264) B.R. Danielsson et al, Behavioral effects of prenatal metallic mercury inhalation exposure in rats,  Neurotoxicol   Teratol , 1993, 15(6): 391-6; & Prenatal exposure to metallic mercury vapor and methyl mercury produce interactive behavioral changes in adult rats,  NeurotoxicolTeratol , 1996, 18(2): 129-34, A. Fredriksson et al,

(271) B.A. Weber, The Marburg Amalgam Study,  Arzt  und Umwelt, Apr, 1995; (266 cases) & (b) Amalgam and Allergy, Institute for Naturopathic Medicine, 1994;   

(40 MS cases ),     http://home,t‑online.de/home/Institut_f._Naturheilverfahren/patinf.htm"    

(273)  Mobilization of mercury and arsenic in humans by sodium 2,3-dimercapto-1-propane sulfonate (DMPS). H V  Aposhian  ;   Environ Health  Perspect . 1998 August; 106(Suppl 4): 1017-1025,  www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1533322 ;  &(b) R.Schiele et al,  Mercury Mobilization by DMPS in persons with and without amalgam fillings ,   Zahnarztl . Mitt, 1989, 79(17): 1866-1868;                       

(274)   L.Friberg  et al, Mercury in the brain and CNS in relation to amalgam fillings,  Lakartidningen , 83(7):519-521,1986(Swedish Medical Journal),  http://home.swipnet.se/misac/research6.html

(287)   Warvinge  K, Mercury distribution in the neonatal and adult cerebellum after mercury vapor exposure of pregnant squirrel monkeys, Environ Res 2000, 83(2): 93-101; 

 (296)    L.Bucio  et al, Uptake, cellular distribution and DNA damage produced by mercuric 

          chloride in a human fetal     hepatic cell line.   Mutat  Res 1999 Jan 

          25;423(1‑2):65‑72;  &  ( b) Ho PI, Ortiz D, Rogers E, Shea TB. 

          Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase 

          hyperactivation and DNA damage.   J  Neurosci  Res. 2002 Dec 1;70(5):694-702; 

          &(c) Snyder RD;  Lachmann   PJ;  Thiol  involvement in 

          the inhibition of DNA repair by metals in mammalian       cells.  Source Mol  Toxicol

          1989 Apr‑Jun, 2: 2,     117‑28 ; &     L.Verschaeve  et al, Comparative in vitro 

          cytogenetic studies in mercury-exposed human lymphocytes,  Muta  Res, 1985, 

          157(2-3):221- 6;  &    L.Verschaeve,Genetic damage induced by low level mercury  

          exposure,  Envir  Res,12:306-10,1976.     

(303)     Heavy Metal and Chemical Toxicity, Dietrich  Klinghardt , MD, Ph.D.     www.neuraltherapy.com/chemtox.htm  ; & Mercury Toxicity and Systemic Elimination Agents, D.  Klinghardt  & J Mercola (DO), J of Nutritional and Environmental Medicine, 2001, 11:53-62; &  Amalgam DetoxKlinghardt  Academy of Neurobiology, 2008.

(317)  S.Zinecker , Amalgam: inorganic mercury in the brain, der  Kassenarzt , 1992, 32(4):23;  PraxiproblemAmalgam , Der  Allgermeinarzt , 1995,17(11):1215-1221. (1800 patients)

(323) (a)Dr.  Kohdera , Faculty of Dentistry, Osaka Univ., International Congress of Allergology and Clinical Immunology, EAACI, Stockholm, June 1994, &  Heavy  Metal Bulletin, Vol 1, Issue 2, Oct 1994.   (160 cases cured-eczema); (b)  Tsunetoshi   Kohdera , MD, dermatology, allergology, 31 Higashitakada‑cho Mibu Nakagyo‑ku SchimazuClinics    Kyoto 604 Japan   e‑ mail:smc ‑inet@mbox.kyoto‑inet.or. &(c) P.Dallmann,Dermatalogical  conditions caused by amalgam?  PeDa_Eigenverisg , 1995; & (d)G. Ionescu, Biol Med, 1996, (2): 65-68; & (e) Ionescu G.: Tooth alloys. Electro‑chemical and biological processes.   Materialprueuefung .. Komplementaeaermed . , 3, 72-77, 1996; & (f) Ionescu G; Heavy metal load by Dental materials.  Experience  with  Neurodermitis and Psoriasis patients.. Zeitung f.  Umweltmedizin , 3, 163-171, 1997

(327)   Danscher  G;  Horsted‑Bindslev  P;  Rungby  J.  Traces of mercury in organs from primates with amalgam fillings.   ExpMol   Pathol  1990;52(3):291‑9;                                                                                  

  (330) (a) Wilkinson LJ, Waring RH.  Cysteine dioxygenase: modulation of expression in human cell lines by cytokines and control of sulphate production.  Toxicol  In Vitro. 2002 Aug;16(4):481-3; & (b) C.M. Tanner et al, Abnormal Liver Enzyme Metabolism in  Parkinson�s , Neurology, 1991, 41(5): Suppl 2, 89-92; &  M.T.Heafield  et al, "Plasma cysteine and sulphate levels in patients with Motor  neurone  disease, Parkinson's Disease, and  Alzheimer�s'sDisease ",  Neurosci  Lett, 1990, 110(1‑2), 216,20; &     A.Pean  et al, "Pathways of cysteine metabolism in MND/ALS", J neurol Sci, 1994, 124, Suppl:59‑61;  &  Steventon  GB, et al; Xenobiotic metabolism in motor neuron disease, The Lancet,  Sept 17 1988, p 644-47; & Neurology 1990,   40:1095-98.

(331)  C.Gordon  et al, Abnormal  sulphur  oxidation in systemic lupus  erythrmatosus (SLE), Lancet,1992,339:8784,25-6; &  P.Emory  et al, Poor  sulphoxidation  in patients with rheumatoid  arthitis , Ann Rheum. Dis, 1992, 51:3,318-20; & Bradley  H,et  al,  Sulfate metabolism is abnormal in patients with rheumatoid arthritis.        Confirmation by in vivo biochemical findings. J  Rheumatol . 1994 Jul;21(7):1192-6; & T.L. Perry et al,  Hallevorden-Spatz  Disease: cysteine accumulation and cysteine dioxygenase  defieciency , Ann Neural, 1985, 18(4):482-489.


(333) (a) A.J.Freitas  et al, Effects of Hg2+ and CH3Hg+ on Ca2+ fluxes in the rat brain, Brain Research, 1996, 738(2): 257-64; & (b) P.R.Yallapragoda  et  al,Inhibition  of calcium transport by Hg salts in rat cerebellum  and cerebral cortex, J Appl  toxicol , 1996, 164(4): 325-30; & (c)  E.Chavez  et al, Mitochondrial calcium release by Hg+2",J Biol Chem, 1988, 263:8, 3582-;&(d)  A.  Szucs  et al, Cell Mol  Neurobiol , 1997,17(3): 273-8; &     (e)  D.Busselberg , 1995, Calcium channels as target sites of heavy metals,Toxicol  Lett, Dec;82‑83:255‑61; & Cell Mol  Neurobiol  1994 Dec;14(6):675‑87;   & (f) Rossi AD, et al, Modifications of Ca2+ signaling by      inorganic mercury in PC12 cells.  FASEB J 1993, 7:1507-14.                    

(337) H.G.  Abadin , et al, U.S. ATSDR, Breast-feeding exposure of infants to mercury, lead, and cadmium: A Public Health   Perspective,  Toxicol  Ind Health, 1997, 13(4): 495-517.            

(338) (a) W. Y.Boadi  et al, Dept. Of Food Engineering and Biotechnology, T-I Inst of Tech., Haifa, Israel, In vitro effect of mercury on enzyme activities and its accumulation in the first-trimester human   placenta,  Environ Res, 1992, 57(1):96-106;& In vitro exposure to mercury and cadmium alters term human placental      membrane fluidity,  Pharmacol , 1992, 116(1): 17-23;  & (b) J.Urbach  et al, Dept. of Obstetrics & Gynecology,              Rambam Medical Center, Haifa, Israel, Effect of inorganic mercury on in vitro placental nutrient transfer      and      oxygen consumption,  Reprod   Toxicol , 1992,6(1):69-75;&   Karp W, Gale TF et al, Effect of mercuric acetate on selected enzymes of maternal and fetal hamsters Environmental Research, 36:351-358; & W.B. Karp et al, Correlation of human placental enzymatic  activity with trace         metal concentration in placenta, Environ            Res. 13:470- 477,1977; & (d)  Boot JH.  Effects of SH‑blocking compounds on the energy metabolism and glucose uptake in isolated rat hepatocytes.  Cell Struct  Funct  1995 Jun;20(3):233‑8; &  SemczukMSemczuk ‑Sikora A.  New data on toxic metal intoxication (Cd, Pb, and Hg in  particular)  and  Mg status during pregnancy.  Med Sci  Monit  2001 Mar;7(2):332‑340

(342)  Stejskal VDM,  Danersund  A,  Lindvall  A,  Hudecek  R,  Nordman  V,  Yaqob  A et al. Metal- specific memory lymphocytes: biomarkers of sensitivity in man.  Neuroendocrinology Letters, 1999; 20: 289-98.

(348) (a)  Kistner  A, Mercury poisoning by amalgam:  Diagnosis and therapy ZWR, 1995,104(5):412-417; &( b)  Mass C, Bruck W.  Study on the significance of mercury accumulation in the brain from dental amalgam fillings  through direct mouth-nose-brain transport,  Zentralbl   Hyg   Umweltmed  1996; 198(3): 275-91.

(363)  J. W.Reinhardt , Univ. Of Iowa College of Dentistry, Side effects: mercury contribution to

body burden from dental amalgam, Adv Dent Res, 1992, 6: 110-3.

(366) (a)Tooth amalgam  and pregnancy,  Geburtshilfe   Frauenheikd . 1995, 55(6): M63-M65; &(b) T. Zinke, There are new realizations to the Amalgam problem, in Status Quo and  perspectiveves  of Amalgam and Other Dental Materials, L.F. Friberg( Ed.), Georg= Thieme -Verlag, Stuttgart, New York, 1995, p1-7. 

(367)(a) Gerhard I, Amalgam from  gynacological  view, Der  Frauenarzt , 1995,36(6): 627-28; & (b)Schdstoffeund Fertillitatsstorungen, Schwermetalle und Mineralstoffe, Geburtshilfe Frauenheikd, 1992, 52(7):383-396; & (c) Gerhard I, Reproductive risks of heavy metals and pesticides in women, in: Reproductive Toxicology,   M.Richardson (ed.), VCH  Weinhelm , 1993, 167-83;   & (d)Gerhard I, Infertility with women by environmental illnesses, JD. Kruse- Jarres ( Ed.), 1993, 51-68.

(369)  Sterzl  I,  Prochazkova  J, Stejskal VDM et al, Mercury and nickel allergy: risk factors in fatigue and autoimmunity.  Neuroendocrinology Letters 1999; 20:221-228.     www.melisa.org ; &  The role of environmental factors in autoimmune thyroiditis.  Hybenova  M et al:  Neuro Endocrinol Lett.  2010;31(3):283-9; & The beneficial effect of amalgam replacement on health in patients with autoimmunity.  Prochazkova  J, Stejskal VD, et  al; Neuro  Endocrinol Lett.  2004 Jun;25(3):211-8.

 (370)

(372) (a)Atchison WD.  Effects of neurotoxicants on synaptic transmission.  Neurotoxicol   Teratol  1998, 10(5):393-416; &   Sidransky  H, Verney E, Influence of lead acetate and selected metal salts on tryptophan binding to         rat hepatic nuclei.  Toxicol   Pathol  1999, 27(4):441-7; &(b) Shukla GS, Chandra SV, Effect of interaction of Mn2+withZn2+, Hg2+, and Cd2+ on some neurochemicals in rats.  Toxicol  Lett 1982, 10(2-3):163- 8;  & (c)Brouwer M et al, Functional changes induced by heavy metal ions.  Biochemistry, 1982, 21(20): 2529-38.

(375) (a) Stejskal VDM,  Danersund  A,  Lindvall  A.  Metal-specific memory lymphocytes: biomarkers of sensitivity in   man.  Neuroendocrinology Letters 1999; &(b) Stejskal V,  Hudecek  R, Mayer W, "Metal-specific lymphocytes: risk factors in CFS and other related diseases", Neuroendocrinology Letters, 20: 289-298,  1999  www.melisa.org

(379) (a) MacDonald EM, Mann AH, Thomas HC. Interferons as mediators of psychiatric morbidity.  The Lancet 1978; Nov 21, 1175-78; & (b)  Hickie  I, Lloyd A.  Are cytokines associated with neuropsychiatric syndrome in   humans?  Int J  Immunopharm  1995; 4:285-294.

(380) (a)  Komaroff  AL, Buchwald DS.  Chronic fatigue  syndrom : an update.  Ann Rev Med 1998; 49: 1-13; & (b) Buchwald DS,  Wener  MH, Kith P.  Markers of  inflamation  and immune activation in CFS. J  Rheumatol  1997; 24:372-76.

(381) (a)  Demitrack  MA, Dale JK.   Evidence for impaired activation of the hypothalamic-pituitary-adrenal axis in  patients with chronic fatigue syndrome. J Clin Endocrinol  Metabol  1991; 73:1224-1234; & (b)Turnbull AV,  RivierC .  Regulation of the HPA axis by cytokines.  Brain  Behav   Immun  1995; 20:253-75; & (c)Ng TB, Liu   WK.  In Vitro Cell Dev Biol 1990 Jan;26(1):24‑8.  Toxic effect of heavy metals on cells isolated from the rat adrenal and testis.

(382)  Sterzl  I,  Fucikova  T,  Zamrazil  V.  The fatigue syndrome in autoimmune thyroiditis with polyglandular   activation of autoimmunity.   Vnitrni   Lekarstvi  1998; 44: 456-60.   www.melisa.org ;   &(b)  Sterzl  I,  Hrda  P,  Prochazkova  J,  BartovaJ ,    Reactions to metals in patients with chronic fatigue and autoimmune endocrinopathy.  Vnitr  Lek 1999 Sep;45(9):527‑31; & (c) Kolenic  J,  Palcakova  D,  Benicky  L,  Kolenicova  M - "The frequency of auto-antibody occurrence in occupational risk (mercury)"  Prac  Lek 45(2):75-77 (1993), &  ; &(c) The beneficial effect of amalgam replacement on health in patients with autoimmunity. Prochazkova J, Sterzl I, Kucerova H, Bartova J, Stejskal VD; Neuro Endocrinol Lett. 2004 Jun;25(3):211-8.   www.melisa.org  ; & (d)  Removal of dental amalgam decreases anti-TPO and anti- Tgautoantibodies in patients with autoimmune thyroiditis, Ivan  Sterzl  ,   Jarmila  P, Pavlina H, Petr M,  Jirina  B & Vera  D.M.  ,  Neuroendocrinol  Lett 2006;  27 (Suppl 1):101�000

( 383)( a)  Saito K.  Analysis of a genetic factor of metal allergy-polymorphism of HLA-DR-DO gene.   Kokubyo        Gakkai  Zasschi  1996; 63: 53-69; &(b)  Prochazkova  J,  Ivaskova  E,  Bartova  J, Stejskal VDM.   Immunogentic  findings in patients with altered tolerance to heavy metals.  Eur J Human Genet 1998; 6: 175.

(385) (a)  Kohdera  T, Koh N, Koh R.  Antigen-specific lymphocyte stimulation test on patients with psoriasis vulgaris. XVI International Congress of Allergology and Clinical Immunology, Oct 1997,  Cancoon , Mexico; & (b)Ionescu  G,.  Heavy metal load with atopic Dermatitis and Psoriasis, Biol Med 1996; 2:65-68; & (c) A subset of patients with common variable immunodeficiency.  Blood 1993, 82(1): 192-20.   

 (390) (b)  Ellingsen  DG,  Efskind  J,  Haug  E,  Thomassen  Y, Martinsen I,  Gaarder  PI - "Effects of low mercury  vapourexposure on the thyroid function in  chloralkali  workers" J Appl  Toxicol  20(6):483-9 (2000)     www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?uid=11180271&form=6&db=m&Dopt=r;  &(c) Barregard L, Lindstedt G, Schutz A,  Sallsten  G - "Endocrine function in mercury exposed  chloralkali  workers"  Occup  Environ Med 51(8):536-40 (1994) www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?uid= 7951778&form=6&db= m&Dopt =r ; & (d) Watanabe C - "Selenium deficiency and brain functions: the significance for methylmercury toxicity" Nippon  EiseigakuZasshi  55(4):581-9 (2001); & (e) Watanabe C, Yoshida K,  Kasanuma  Y,  Kun  Y, Satoh H.   In utero methylmercury exposure differentially affects the activities of selenoenzymes in the fetal mouse brain. Environ Res 1999 Apr;80(3):208-14; &(f) Li MX, Tan ZQ, Qin SZ, Zhong LP, Li FH, Wang  HZ,[ Three cases of hypothyroidism induced by cosmetics containing mercury],  Zhonghua  Lao Dong Wei Sheng  Zhi  Ye Bing Za  Zhi . 2004 Aug;22(4):312-3. Chinese.

(392)   Selenium and antioxidant defenses as major mediators in the development of chronic heart failure.  Heart Fail Rev. 2006 Mar;11(1):13-7.  de  Lorgeril  M,  Salen  P.

(394) Amalgam Illness Diagnosis and Treatment , Andrew Hall Cutler, PhD, PE,  http://www.noamalgam.com/ ; & Heavy Metals and Halogens Displace and Block Utilization of Essential Minerals- Iodine and Chelation, International Medical Veritas Associatio http://www.alkalizeforhealth.net/Liodine2.htm ; & The effect of mercuric chloride on thyroid function in the rat., Goldman M, Blackburn P.   Toxicol  Appl  Pharmacol . 1979 Mar 30;48; &  THE EFFECT OF CERTAIN METALLIC CATIONS ON THE IODIDE UPTAKE IN THE THYROID GLAND OF MICE. Acta Endocrinol ( Copenh ). 1964  Aug;46:643 -52.  ANBAR M, INBAR M.

(395)  Iodine: Why You Need It, Why You Can't Live Without It  (4th Edition), Dr. David Brownstein, 2008; &  Overcoming Thyroid Disorders, Dr. David  Brownstein ,   & (b)  Facts about Iodine and Autoimmune Thyroiditis. The Original Internist. 2008 Jun; 15(2): 75-6; &  Iodine nutrition in the United States. Trends and public health implications: iodine excretion data from National Health and Nutrition Examination Surveys I and III (1971-1974 and 1988-1994). J Clin Endocrinol  Metab . 1998 Oct; 83(10):3401-8; Hollowell JG, Hannon WH, et al.; & Orthoiodosupplementation : Iodine sufficiency of the whole human body. The Original Internist. 2002; 9:30-41, Abraham GE, and Hakala JC.; & (c) Effect of iodine and thyroid hormones in the induction and therapy of Hashimoto�s thyroiditis.  Nuklearmedizin . 1999;38(5):144-9. Rink T,  Schroth  HJ,  Holle  LH, et al.

(402) Ando T,  Wakisaka  I,  Hatano  H.  Mercury concentration in gray hair.  Nippon  Eiseigaku   Zasshi  1989; 43(6):1063-8. (405)   Jenny Stejskal, Vera Stejskal. The role of metals in autoimmune diseases and the link to neuroendocrinology Neuroendocrinology Letters, 20:345‑358, 1999. 

(407)  Autism: transient in utero hypothyroxinemia related to maternal flavonoid ingestion during pregnancy and to other environmental antithyroid agents. J Neurol Sci. 2007 Nov 15;262(1-2):15-26.  Epub  2007 Jul 24. Roman GC.

(409) (a)Autism: a unique form of mercury poisoning www.autism.com/ari/mercurylong.html   ; & (b)  YazbakFE (MD,FAAP)  Autism 99: A National Emergency, &(c) Dr. A Holmes, Autism Treatment  Center,Baton  Rouge, La,  http://www.healing-arts.org/children/autismandmercurytestimony.htm ; & (c)Jaquelyn McCandless,  M.D., Autism Spectrum Treatment Center,  Woodland Hills, Ca     http://www.myflcv.com/kidshg.html

(410) J.R. Cade et al, Autism and schizophrenia linked to malfunctioning enzyme for milk protein digestion.  Autism, Mar 1999.

(411) (a)  Puschel  G,  Mentlein  R,  Heymann  E, 'Isolation and characterization of  dipeptyl  peptidase IV from human placenta', Eur J  Biochem  1982 Aug;126(2):359-65; &(b) Kar NC, Pearson CM.   Dipeptyl  Peptidases in     human muscle disease.  Clin  Chim  Acta 1978; 82(1-2): 185-92; &(c) Seroussi K,  Autism and Pervasive Developmental Disorders , 1998, p174, etc.

 

(412) (c) Moreno- Fuenmayor  H,  Borjas  L, Arrieta A, Valera  V,    Plasma excitatory amino acids in autism.  Invest Clin1996,37(2): 113-28; & (b)Rolf LH,  Haarman  FY,  Grotemeyer  KH,  Kehrer  H.  Serotonin and amino acid content in platelets of autistic children.  Acta  Psychiatr   Scand  1993, 87(5): 312-6; & (c) Naruse   H,     Hayashi T,  Takesada  M, Yamazaki K.  Metabolic changes in aromatic amino acids and monoamines in infantile autism and a new related treatment, No  To   Hattatsu , 1989, 21(2):181-9; &(d) Carlsson ML. Is infantile autism a  hypoglutamatergic  disorder?  J Neural  Transm  1998, 105(4-5): 525-35.

(413) (a) Edelson SB, Cantor DS.  Autism: xenobiotic influences.   Toxicol  Ind Health 1998; 14(4): 553- 63;      & (b)  Liska , DJ.  The detoxification enzyme systems. Altern Med Rev 1998. 3(3):187-98; 

(418)    Srikantaiah  MV; Radhakrishnan AN.   Studies on the metabolism of vitamin B6 in the small intestine.   Purification and properties of monkey intestinal pyridoxal kinase. Indian J  Biochem  1970 Sep;7(3):151‑6; & (b)  Abraham GE,  Flechas  JD. The effect of daily ingestion on 100mg iodine in a tablet form of  Lugol  solution ( Iodoral ) combined with high doses of vitamins B-2 and B3 (ATP Cofactors) on various clinical and laboratory parameters in 5 subjects with Fibromyalgia. The Original Internist. 2008 Mar; 15(1):8-15; & Shakir KM, Kroll S,  Aprill  BS, et al. Nicotinic acid decreases serum thyroid hormone levels while maintaining a euthyroid state. Mayo Clin Proc. 1995 Jun;70(6):556-8.

(419)     Lipozencic  J;  Milavec‑Puretic  V; Pasic A.   Contact allergy and psoriasis.  Arh   Hig  Rada  Toksikol  1992 Sep;43(3):249‑54; &       Roujeau  JC et al, Acute generalized  exanthematous  pustulosis. Analysis of 63      cases;  Arch  Dermatol 1991 Sep;127(9):1333‑8;  &  Yiannias  JA; Winkelmann RK; Connolly SM.   Contact sensitivities in palmar plantar pustulosis    ( acropustulosis ).Contact Dermatitis 1998 Sep;39(3):108‑11      

(427) Chetty CS, McBride V, Sands S,  Rajanna  B.   Effects in vitro on rat brain  Mg( ++)-ATPase.   Arch IntPhysiol    Biochem 1990, 98(5):261- 7;  &  Bara M,  Guiet -Bara A,  Durlach  J. Comparison of the effects of taurine and magnesium on electrical characteristics of artificial and natural membranes. V. Study on the human amnion of the antagonism between magnesium, taurine and polluting metals. [ French] magnesium. 1985;4(5-6):325-32. 

(439) (a) Mercuric chloride intoxication. Part 1, Bull Environ  Contam   Toxicol  1978; 20(6): 729-35; & (b) Mondal MS,  MitraS .  Inhibition      of bovine xanthine oxidase activity by Hg2+ and other metal ions.  J  Inorg   Biochem   1996 ; 62(4): 271-9; & (c) Sastry KV, Gupta PK.  In vitro inhibition of digestive enzymes by heavy metals and their reversal by chelating agents: 

 (458) Dowling AL,  Iannacone  EA, Zoeller RT.   Maternal Hypothyroidism Selectively Affects the Expression of Neuroendocrine‑Specific Protein A Messenger Ribonucleic Acid in the Proliferative Zone of the Fetal Rat Brain Cortex.  Endocrinology 2001 Jan 1;142(1):390‑399

(459)  Isny   Clinic( South Germany) Kurt Muller , MD,  member of Editorial board for Ganzheitliches  Medicine Journal.  Wassertornstrasse  6,  Isny , BRD fax: 0049 7562 550 52

(464) (a) Walsh, WJ, Health Research Institute, Autism and Metal Metabolism,  www.hriptc.org/autism.htm, Oct 20, 2000; & (b)  Walsh WJ, Pfeiffer Treatment Center, Metal‑Metabolism and Human Functioning, 2000,  http://www.hriptc.org/index.php

(468)  Overzet  K, Gensler TJ, Kim SJ, Geiger ME, van  Venrooij  WJ, Pollard KM, Anderson P, Utz PJ. Small nucleolar RNP Scleroderma autoantigens associate with phosphorylated serine/arginine splicing factors during apoptosis.  Arthritis Rheum 2000 Jun;43(6):1327‑36

(476) (a) Dr Thomas  Verstraeten , US Center for Disease Control and Prevention, Summary Results: Vaccine Safety Datalink Project ‑ a database of 400,000 children , May 2000; & (b) Halsey, NA. Limiting Infant Exposure to Thimerosal in vaccines.   J. of the Amer. Medical Assoc., 282: 1763-66; & (c) The Center for Biologics Evaluation and Research (CBER), Review of the Use of Thimerosal in Vaccines, The US Food and Drug Administration (FDA), Jul 4, 2000.

(500) B. Windham, Common Exposure Levels and Adverse Health Effects from Mercury/Amalgam Dental Fillings, and Results of Replacement of Amalgam Fillings, Review, 2019.   (over 3000 peer-reviewed studies documenting

common exposures more than Govt health guidelines and  mechinisms  of causality of 40 chronic conditions, and 60,000 clinical cases of recovery or significant improvement after amalgam replacement as followed by doctors)   http://www.myflcv.com/dams.html

(501) Review: Documentation of common mercury exposure levels from amalgam by medical labs, Government agency studies, peer-reviewed studies. B Windham (Ed),  www.myflcv.com/damspr1.html      &    www.myflcv.com/amalno1.html

(502) Effects of prenatal and neonatal mercury exposure on children, B Windham(Ed), over 150 peer-reviewed studies,  www.myflcv.com/fetaln.html

(503) Summary of results of treatment of chronic health conditions by amalgam replacement, as reported to the FDA and treatment clinics,  &   www.myflcv.com/hgremove.html

 (508) (a) Bonar DB, McColgan B, Smith DR, Darke C, Guttridge MG, Williams H Smyth PPA, Hypothyroidism and aging: The Rosses� Survey.  Thyroid 2000, 10(9):821-827; & (b) Canaris GJ,  Manowitz  NR, Mayor G, Ridgway EC.   The Colorado thyroid disease prevalence study. Arch  Tntern  Med 2000, 160(4):526-34; &(c) GS Connection 11(12): Prevalence of Thyroid Imbalance, Thyroid in Pregnancy, GSDL, www.gsdl.com

(509) (a) Klein RZ, Sargent JD, Larsen PR,  Waisbren  Se, Haddow JE, Mitchell ML, Relation of severity of maternal hypothyroidism to cognitive development of offspring.  J Med Screen 2001: 8:18-20; &(b) de Escobar DM,  OrbregonMF , del Rey FE,  Is  neuropsychological development related to maternal hypothyroidism or to maternal hypothyroxinemia?  J Clin  Endocrin   Metab  2000; 3975-3987; &(c) Thyroid Imbalances in Pregnancy Linked to Poor Child  Neurodelopment , Great Smokies Diagnostic Lab, www.gsdl.com/news/connections/vol11/conn20010228.html

&(d) J. E. Haddow et al, Babies Born to Mothers with Untreated Hypothyroidism Have Lower I.Q.'s, New England Journal of Medicine, Aug 19, 1999; & (e)  Lavado-Autric  et al. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. JCI 111:1073-1082 (2003); & (f)Pop VJ, Vader HL et al, Low maternal free thyroxine during early pregnancy is associated with impaired psychomotor development in infancy,  ClinEndocrinol ( Oxf ), 50:149-55, 1999; & Man EB, Brown JF,  Serunian  SA. Maternal hypothyroxinemia: psychoneurological deficits of progeny. Ann Clin Lab Sci 1991;21(4):227-39; & Pharoah POD, Connolly KJ et al, Maternal thyroid hormone levels in pregnancy and cognitive and motor performance of the children, Clin Endocrinol( Oxf ), 1984, 21:265-70; & (g) Pop VJ, de Vries E, et al, Maternal thyroid peroxidase antibodies during pregnancy: and impaired child development, J Clin Endocrinol  Metab ., 1995, 80:3561-3566 & Connors MH,  Styne  DM, Neonatal athyreosis resulting from thyrotropin-binding inhibitory  immonoglobulins , Pediatrics, 1986, 78:287-290; &  (h)  Asami  T, Suzuki H, Effects of thyroid hormone deficiency on electrocardiogram findings of  congenenitally  hypothyroid neonates. Thyroid 11: 765-8, 2001;  &  Kumar  R, Chaudhuri BN. Altered maternal thyroid function: fetal and neonatal heart cholesterol and phospholipids,  .Indian J  Physiol   Pharmacol  1993 Jul;37(3):176-82

(510) (a)Morris MS,  Bostom  AG, Jacques PJ,  Selhub  J, Rosenberg IH,  Hyperhomocysteinemia and hypercholesterolemia associated with hypothyroidism in the third U.S. National Health and Nutrition Examination Survey,  Artherosclerosis  2001, 155:195-200; & (b)  Shanoudy  H. Soliman A, Moe S,  Hadian  D, Veldhuis F,  Iranmanesh   A, Russell D, Early manifestations of sick  eythyroid  syndrome in patients with compensated chronic heart failure, J Card Fail 2001, 7(2):146-52; & (c)AE.  Hak , HAP. Pols, TJ. Visser, et al., The Rotterdam Study., Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women, Ann Int Med, 2000, vol. 132, pp. 270--278  &(d)Thyroid Dysfunction Linked to Elevated Cardiac Risk, GSDL, www.gsdl.com/news/connections/vol12/conn20010411.html.; &(e) Biondi B, Palmieri EA, Lombardi G, Fazio S.  Effects of subclinical thyroid dysfunction on the heart.  Ann Intern Med 2002 Dec 3;137(11):904-14; & (f) B.G.  Nedreboe , O. Nygard, et al, Plasma Total Homocysteine of hypothyroid patients during 12 months of treatment,  Haukeland  Univ. Hospital, Bergen, Norway, bjoern.gunnar.nedreboe@haukeland.no  (references 7 other studies with similar findings); & (g) Hussein, WI, Green, R, Jacobsen, DW,  Faiman , C. Normalization of  hyperhomocysteinemia  with L-thyroxine in hypothyroidism. Ann Intern Med 1999; 131:348;

(511) (a) Abramson J,  Stagnaro -Green A, Thyroid antibodies and fetal loss, Thyroid 2001, 11(1): 57-63; &(b) Thyroid Antibodies May Spur Pregnancy Loss, GSDL, www.gsdl.con/news/connections/vol12/conn20010411.html

& (c)Allan  W.( MD), Maternal Hypothyroidism During Pregnancy Linked to Increased Risk for Miscarriage,  Journal of Medical Screening, November 22, 2000; & (d) Abstract # 274:  Wolfberg , Adam J. and David      A.  Nagey , "Thyroid Disease During Pregnancy and Subsequent Congenital Anomalies. "St Johns Univ.  kblum@jhmi.edu; & Birth Defect News, Jan 2002, p2; & (e) Emerson, C.H. (1996).  Thyroid Disease During and After Pregnancy.  In L.E. Braverman & R.D.  Utiger  (Eds.), The Thyroid, A Fundamental and Clinical Text (pp. 1021-1031; & (f) Man EB, Jones WS, Thyroid function in human pregnancy: retardation in 8-month old infants, Am J  Obstet   Gynecol , 1969, 104:898-908; & Brent GA, Maternal  hyrothyroidism : recognition and management, Thyroid, 1999, 9:661-

(513) (a) Valentino M,  Santarelli  L,  Pieragostini  E,  Soleo  L,  Mocchegiani  E.  In vitro inhibition of  thymulin  production in mercury-exposed thymus of young mice. Sci Total Environ 2001 Apr 10;270(1-3):109-112; &

(b)   Nordlind  K. Stimulating effect of mercuric chloride and nickel sulfate on DNA synthesis of thymocytes and peripheral lymphoid cells.  Int Arch Allergy Appl Immunol 1983;72(2):177-179; & Chen M, von  Mikecz  A.  Specific inhibition of rRNA transcription and dynamic relocation of fibrillarin induced by mercury.  Exp Cell Res 2000 Aug 25;259(1):225‑238; & Dieter MP, Luster MI, Boorman GA, Jameson CW, Dean JH, Cox JW. Immunological and biochemical responses in mice treated with mercuric chloride.  Toxicol  Appl  Pharmacol  1983 Apr;68(2):218‑228.

 

(515)  Laks , Dan R. Assessment of chronic mercury exposure within the U.S. population, National Health and Nutrition Examination Survey, 1999_2006.  Biometals . August 2009; &  Laks , D.R. et al, Mercury has an affinity for pituitary hormones, Medical Hypotheses, Dec 2009. 

(555)  Lewis RN; Bowler K.    Rat brain (Na+‑K+) ATPase: modulation of its ouabain‑sensitive K+‑ PNPPase  activity by thimerosal. Int J  Biochem  1983;15(1):5‑7;  Bellabarba  D, and Tremblay R; Effect of thimerosal on serum binding of thyroid hormones, Can J  Physsiol  Pharmacol,173, 51:156-159: &  Hokkfen  B,  Kodding  R,  Hesch  RD; Regulation of thyroid hormone metabolism in rat liver fractions,  Biochim   Biophys  Acta 1978, 539:(1): 114-24.          

(558) American Assoc. of Clinical Endocrinologists and American College of  Endocrinolog .  AACE clinical practice guidelines for the evaluation and treatment of hyperthyroidism and hypothyroidism.   Endocr   Pract ., 1995, 1: 54-62.

(559) Choy CM, Lam CW, et al, 2002, Infertility, blood mercury concentrations, and dietary seafood consumption: a case control study, BJOG: An International Journal of Obstetrics and  Gynaecology , 109: 1121-1125.

(560) Nath J, Safar R. Late-onset bipolar disorder due to hyperthyroidism. Acta  Psychiatr   Scand   2001;104:72 -75.

(561) Muller AF,  Drexhage  HA,  Berghout  A. Postpartum thyroiditis and autoimmune thyroiditis in women of childbearing age: recent insights and consequences for antenatal and postnatal care. Endocrine Reviews 2001;22(5):605-30.

(567) Kim CY, Satoh H, et al, Protective effect of melatonin on methylmercury-Induced mortality in mice.  Tohoku J  ExpMed . 2000 Aug;191(4):241-6; &  Olivieri   G,  Hock  C, et al , Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells.  J  Neurochem . 2000 Jan;74(1):231-6.

(568) Bemis JC,  Seegal  RF; 2000, PCBs and methylmercury alter intracellular calcium concentrations in rat cerebellar granule cells. Neurotoxicology, 21(6): 1123-1134. 

(569)  Baccarelli  A,  Pesatori  AC,  Bertazzi  PA. Occupational and environmental agents as endocrine disruptors: experimental and human evidence.   J Endocrinol Invest. 2000 Dec;23(11):771-81

(570)  Libe  R,  Baccarelli  A, et al, Long-term follow-up study of patients with adrenal  incidentalomas.Eur  J Endocrinol. 2002 Oct;147(4):489-94. 

 (571) Manzo  L,Candura  SM, Costa LG, et al;  Biochemical markers of neurotoxicity. A review of mechanistic studies and applications. Hum Exp  Toxicol , 1996 Mar, 15 Suppl  1:,  S20-35. 

(580)  Life Extension Foundation (MDs), Disease Prevention and Treatment, Expanded 5 th  Edition, 20133; &  www.lifeextension.com

(b) American Journal of Clinical Nutrition, 2008 & Life Extension Foundation, Life Extension, Jan 2009, ,     www.lifeextension.com ; & (b) Sinclair C, Gilchrist JM, Hennessey JV, et al. Muscle carnitine in hypo- and hyperthyroidism. Muscle Nerve. 2005 Sep;32(3):357-9; & Maebashi M, Kawamura N, Sato M, et al. Urinary excretion of carnitine in patients with hyperthyroidism and hypothyroidism: augmentation by thyroid hormone. Metabolism. 1977 Apr;26(4):351-6; &  Benvenga  S, Amato A,  Calvani  M, et al. Effects of carnitine on thyroid hormone action. Ann N Y  Acad  Sci. 2004 Nov; 1033:158-67; &  Benvenga  S, Ruggeri RM, Russo A, et al. Usefulness of L-carnitine, a naturally occurring peripheral antagonist of thyroid hormone action, in iatrogenic hyperthyroidism: a randomized, double-blind, placebo-controlled clinical trial. J Clin Endocrinol  Metab . 2001 Aug;86(8):3579-94.

 (581) Vitamin Research News, weekly journal (several editions), 2003-2009,  www.vrp.com

 

***********