The Metabolic Effects of Mercury Exposure and Treatments that Alleviate such Conditions

DAMS Intl.   1079 Summit Ave     St Paul  MN 55105   www.flcv.com/dams.html

 

Dental amalgam has been documented by medical lab tests and Government agencies to be the largest source of mercury in most people who have several amalgam fillings. Bacteria in the mouth and intestines and other methyl donors methylate mercury to methyl mercury, so amalgam fillings are also the largest source of methyl mercury in many people(60). Some people also get significant mercury exposures from fish or vaccinations, and in a large survey testing people’s mercury level it was found that over 22% tested had dangerous levels of mercury, with over 30 % in some states such as Florida and New York (543b).        A large U.S. Centers for Disease Control epidemiological study, NHANES III,  found that those with more amalgam fillings(more mercury exposure) have significantly higher levels of chronic health conditions(543a).   A 2009 study found that inorganic mercury levels in people have been increasing rapidly in recent years(543b). It used data from the U.S. Centers for Disease Control and Prevention’s National Health Nutrition Examination Survey (NHANES) finding that while inorganic mercury was detected in the blood of 2 percent of women aged 18 to 49 in the 1999-2000 NHANES survey, that level rose to 30 percent of women by 2005-2006.

Mercury causes significant destruction of stomach and intestine epithelial cells, resulting in damage to stomach lining, and adversely alters bacterial populations in the intestines causing leaky gut syndrome with toxic, incompletely digested complexes in the blood(222,223,228b,303,35) and accumulation of heliobacter pylori, a suspected major factor in stomach ulcers and stomach cancer(256) and candida albicans, as well as poor nutrient absorption. Mercury has also been found to cause ulcerative colitis(406).   Mercury’s ability to bind to SH hydroxyl radical in cell membranes alters cell permeability(338,405,252b,35,21c) which further adds to essential mineral deficiencies and imbalances.  Forming strong bonds with and modification of the-SH groups of proteins causes reactive oxygen species(free radicals) and  mitochondrial release of calcium (1,21,35,38,43,329,333,432), as well as altering molecular function of amino acids and damaging enzymatic processes (33,96,111,194,252,303,338,405,410-412) resulting in improper cysteine regulation(194), inhibited glucose transfer and uptake(338,254), damaged sulfur oxidation processes(33,194,338), and reduced glutathione availability (necessary for  detoxification)(13,126,54). Several other toxic metals have similar effects, as well as synergistically causing more serious effects in conjunction with mercury.    

 

      Mercury from amalgam binds to the -SH (sulfhydryl) groups, resulting in inactivation of sulfur and blocking of enzyme functions such as cysteine dioxygenase(CDO), gamma‑  glutamyltraspeptidase(GGC) and sulfite oxidase, producing sulfur metabolites with extreme toxicity that the body is unable to properly detoxify(33,111,114,194,258,405), along with a deficiency in sulfates and other metabolites required for many body functions.    Sulfur is essential in enzymes, hormones, nerve tissue, and red blood cells.  These exist in almost every enzymatic process in the body.  Blocked or inhibited sulfur oxidation at the cellular level has been found in most with many of the chronic degenerative diseases, including Parkinson’s, Alzheimer’s, ALS, lupus, rheumatoid arthritis, MCS, autism,  etc(330,331,464,514, 33,35,56, 194), and appears to be a major factor in these conditions.  Mercury also blocks the metabolic action of manganese and the entry of calcium ions into cytoplasm(333).  Mercury affects the free selenium levels(390) and superoxide dimustase function(13a,443) Mercury reduces the bloods ability to transport oxygen to organs or the fetus and the transport of essential nutrients including amino acids, glucose, magnesium, zinc and Vit B12 (43,96,198,260d,264,338,339,347,427); depresses enzyme isocitric dehydrogenase (ICD) in fetus, causes reduced iodine uptake & hypothyroidism (50,91,212,222,369,382,303,390,459,35ab), and increased homocysteine levels(75).  Mercury from amalgam thus has the potential to disturb all metabolic processes(25,21,33, 35,56,60,111, 180,194,303).  Mercury is transported throughout the body in blood and can affect cells in the body and organs in different ways.  

            Mercury  blocks the immune function of magnesium and zinc (198,427,43,38), whose


deficiencies are known to cause significant neurological effects(461,463). The low Zn levels result in deficient  CuZnSuperoxide dismustase (CuZnSOD), which in turn leads to increased levels of superoxide due to toxic metal exposure.  This is in addition to mercury’s effect on metallothionein and copper homeostasis as previously discussed(477).  Copper is an essential trace metal which plays a fundamental role in the biochemistry of the nervous system(489,495,464).   Several chronic neurological conditions involving copper metabolic disorders are well documented like Wilson’s Disease and Menkes Disease.  Mutations in the copper/zinc enzyme superoxide dismustase(SOD) have been shown to be a major factor in the motor neuron degeneration in conditions like familial ALS and similar effects on Cu/Zn SOD to be a factor in other conditions such as autism, Alzheimer’s, Parkinson’s, and non-familial ALS(489,495,464,111).  This condition can result in zinc deficient SOD and oxidative damage involving  nitric oxide, peroxynitrite, and lipid peroxidation(495,496,489,524), which have been found to affect glutamate mediated excitability and apoptosis of nerve cells and effects on mitochondria (495,496,524,119) These effects can be reduced by zinc supplementation(464,495), as well as supplementation with antioxidants and nitric oxide-suppressing agents and peroxynitrite scavengers such as Vit C, Vit E, lipoic acid, Coenzyme Q10, carnosine, gingko biloba, N-acetylcysteine, etc.(444,464,494,495,469,521,524). Some of the antioxidants were also found to have protective effects through increasing catalase and SOD action, while reducing lipid peroxidations(494a).  Ceruloplasmin in plasma can  be similarly affected by copper metabolism disfunction, like SOD function, and is often a factor in neurodegeneration(489).

Mercury causes interruption of the cytochromeC oxidase system/ATP energy function (43,84,232,338c,35) and blocks enzymes needed to convert porphyrins to adenosine tri phosphate(ATP), the body’s basic energy source,  causing progressive  porphyrinuria,  resulting in low energy, digestive problems, and porphyrins in urine (34,35,69,70,73,210,212,226,232,258,260).        Also mercury binding with cell membranes interfers with sodium and potassium enzyme functions, causing excess membrane permeability, especially in terms of the blood-brain barrier (155,207,311).   Less than 1ppm mercury in the blood stream can impair the blood- brain barrier.   The essential mineral deficiencies and imbalances have been found to be a major factor in Epilepsy, ADHD, depression, and other chronic conditions, and correcting mineral imbalances has been found to cause significant improvement in many such chronic conditions caused by mercury toxicity (444,464,494,560,56a,etc.).

          Mercury   inactivates or inhibits enzyme or coenzyme systems or hormones involving the sulfhydryl protein (SH)groups(181,226,338,405,424,442), along with OH, NH2, and Cl groups in proteins.  HgCl2 also inhibits  aquaporin‑mediated water transport in red blood cells(479) as well as oxygen transport by hemoglobin(232).  Thus some of the main mechanisms of toxic effects of metals include cytotoxicity; changes in cellular membrane permeability; inhibition of enzymes, coenzymes, and hormones; and  generation of lipid peroxides or  free radicals- which result in neurotoxicity, immuno toxicity, impaired cellular respiration, gastrointestinal/metabolic effects, hormonal effects, and immune reactivity or autoimmunity.  

       The alteration of intestinal bacterial populations necessary for proper digestion along with other damage and membrane permeability effects of mercury are major factors in creating “leaky gut” conditions with poor digestion and absorption of nutrients and toxic incompletely digested compounds in the bloodstream(338,21c,222,223,228b35,etc.).  Some of the gastrointestional problems caused by mercury include poor mineral absorption, diarrhea, stomatis, bloating, wasting disease, food allergies, leaky gut syndrome,etc.(21c,223,303,338,35, etc.)

 

 

                    References

(13)(a) S.Hussain et al, “Mercuric chloride‑induced reactive oxygen species and its effect on antioxidant enzymes in different regions of rat brain”,J Environ Sci Health B 1997 May;32(3):395‑409;  & P.Bulat, “Activity of Gpx and SOD in workers occupationally exposed to mercury”, Arch Occup Environ Health, 1998, Sept, 71 Suppl:S37-9;      &  Stohs SJ, Bagchi D.  Oxidative mechanisms in the toxicity of metal ions.  Free Radic Biol Med 1995; 18(2): 321-36 ; & D.Jay, “Glutathione inhibits SOD activity of Hg”, Arch Inst cardiol Mex, 1998,68(6):457-61

(21) R.A.Goyer,”Toxic effects of metals”in: Caserett and Doull’s Toxicology- TheBasic Science of Poisons, McGraw-Hill Inc., N.Y., 1993; &(c) Encyclopedia of Occumpational Health and Safety, International Labour Office, Geneva, Vol 2, 3rd Edition; & Bapu C, Purohit RC, Sood PP. Fluctuation of trace elements during methylmercury toxication, and chelation therapy.  Hum Exp Toxicol. 1994 Dec;13(12):815-23


(33) (a)  Markovich et al,  "Heavy   metals (Hg,Cd) inhibit the activity of the liver and kidney sulfate transporter Sat‑1", Toxicol  Appl Pharmacol,                 1999,154(2):181‑7; & (b)2S.A.McFadden, “Xenobiotic metabolism and adverse environmental response: sulfur-dependent detox pathways”,Toxicology, 1996, 111(1-3):43-65; &(c)  S.C. Langley-Evans et al, “SO2: a potent glutathion depleting agent”, Comp Biochem Physiol Pharmocol Toxicol Endocrinol, 114(2):89-98; & (d)Alberti A, Pirrone P, Elia M, Waring RH, Romano C.  Sulphation deficit in low-functioning autistic children. Biol Psychiatry 1999, 46(3):420-4.

(34)   PatrickStörtebecker,Associate Professor of Neurology, Karolinska Institute, Stockholm. Mercury Poisoning from Dental amalgam-A Hazard to the Human Brains,  ISBN: 0-941011001-1& J Canadian Dental Assoc, 33(6): 300-;. ?

(35)   (a)Huggins HA, Levy,TE, Uniformed Consent: the hidden dangers in dental care, 1999, Hampton Roads Publishing Company Inc;   & (b) Hal Huggins, Its All in Your Head, 1997; (d) Toxic Elements Research Foundation, Colorado Springs Colorado, Survery of 1320 patients being treated for heavy metal toxicity, 2001.  800-331-2303; &        www.hugnet.com

(43)   (a)Knapp LT; Klann E.   Superoxide‑induced stimulation of protein kinase C via  thiol modification and modulation of zinc content. J Biol Chem 2000 May 22; & P.Jenner,“Oxidative mechanisms in PD”, Mov Disord, 1998; 13(Supp1):24-34; &  Offen D, et al;. Antibodies from ALS patients inhibit dopamine release mediated by L-type calcium channels.  Neurology 1998 Oct;51(4):1100-3.  &(b) B.Rajanna et al, Modulation of protein kinase C by heavy metals, Toxicol Lett, 1995, 81(2-3):197-203: &      

A.Badou et al, HgCl2-induced IL-4 gene expression in T cells involves a protein kinase C-dependent calcium influx through L-type calcium channelsJ Biol Chem. 1997 Dec 19;272(51):32411-8., & D.B.Veprintsev, 1996, Institute for Biological Instrumentation, Russian Academy of Sciences,  Pb2+ and Hg2+ binding to alpha‑lactalbumin.Biochem Mol Biol Int 1996 Aug;39(6):1255‑65; & M. J. McCabe, University of Rochester School of Medicine & Dentistry, 2002, Mechanisms of Immunomodulation by Metals, www2.envmed.rochester.edu/envmed/TOX/faculty/mccabe.html; & Lee YW, Ha MS, Kim YK..   Role of reactive oxygen species and glutathione in inorganic mercury-induced injury in human glioma cells.  Neurochem Res. 2001 Nov;26(11):1187-93.

(45)         Pelletier et al, “Autoreactive T cells in mercury induced autoimmune disease”, Scand J of  Immunology, 1990,31:65-74   & M. Kubicka et al, “Autoimmune disease induced by mercuric chloride”, Int Arch Allergy  Immunol, Jan 1996, 109(1):11-20 . 

(53)         C. Thornsberry, MRL Services, Franklin, Tenn, Proceedings of Infectious Diseases Soc. Of America, San Francisco, Ca., & USA Today, April, 1997; & Science News,Vol 155, June 5, 1999, p356.

(54)   Livardjani F; Ledig M; Kopp P; Dahlet M; Leroy M; Jaeger A.  Lung and blood superoxide dismustase activity in mercury vapor exposed rats: effect of  N‑acetylcysteine treatment. Toxicology 1991 Mar 11;66(3):289‑95.  & G.Ferrari et al, Dept. Of Pathology, Columbia Univ., J Neurosci,1995, 15(4):2857-66; & RR. Ratan et al, Dept. of Neurology, Johns Hopkins Univ., J Neurosci, 1994, 14(7): 4385-92;   &  J.F. Balch et al, Prescription for Nutritional Healing”, 2nd Ed., 1997; 

(56)(a) A.Nicole et al, “Direct evidence for glutathione as mediator of apoptosis in neuronal cells”, Biomed Pharmacother, 1998; 52(9):349-55; & J.P.Spencer et al, “Cysteine & GSH in PD”, mechanisms involving ROS”, J Neurochem, 1998, 71(5):2112-22:  &    & J.S. Bains et al, “Neurodegenerative disorders in humans and role of glutathione in oxidative stress mediated neuronal death”, Brain Res Rev, 1997, 25(3):335-58;&

Medina S, Martinez M, Hernanz A,   Antioxidants inhibit the human cortical neuron apoptosis induced by hydrogen peroxide, tumor necrosis factor alpha, dopamine and beta-amyloid peptide 1-42..   Free Radic Res. 2002 Nov;36(11):1179-84.  &(b)  Pocernich CB, et al.  Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem Int 2001 Aug;39(2):141-9; & D. Offen et al, “Use of thiols in treatment of PD”, Exp Neurol, 1996,141(1):32-9; & (c)  Pearce RK, Owen A, Daniel S, Jenner P, Marsden CD. Alterations in the distribution of glutathione in the substantia nigra in Parkinson's disease.  J Neural Transm. 1997;104(6-7):661-77; & A.D.Owen et al, Ann NY Acad Sci, 1996, 786:217-33; & JJ Heales et al, Neurochem Res, 1996, 21(1):35-39; & &  X.M.Shen et al, Neurobehavioral effects of NAC conjugates of dopamine: possible relevance for Parkinson’sDisease”,  Chem Res Toxicol, 1996, 9(7):1117-26; & Chem Res Toxicol, 1998, 11(7):824-37; & (d)  Li H, Shen XM, Dryhurst G.   Brain mitochondria catalyze the oxidation of 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxyli c acid (DHBT-1) to intermediates that irreversibly inhibit complex I and scavenge glutathione: potential relevance to the pathogenesis of Parkinson's disease.  J Neurochem. 1998 Nov;71(5):2049-62; & (e) Araragi S, Sato M. et al, Mercuric chloride induces apoptosis via a mitochondrial-dependent pathway in human leukemia cells. Toxicology. 2003 Feb 14;184(1):1-9.


(59)   A. Frustaci et al, “Marked elevation of myocardial trace elements in Idiopathic Dilated Cardiomyopathy”,     J of American College of Cardiology, 1999, 33(6):1578-83; & Husten L.  “Trace elements linked to cardiomyopathy”, Lancet 1999; 353(9164): 1594;   & D.V. Vassalo, 1999,Effects of mercury on the isolated heart muscle are prevented by DTT and cysteine, Toxicol Appl Pharmacol 1999 Apr 15;156(2):113‑8; & N.G. Ilblack et al, New aspects of murine coxsackie B3 mycocarditis: focus on heavy metals, European Heart J, 1995, 16: supp O: 20-4;&  Lorscheider F, Vimy M.  Mercury and idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2000 Mar 1;35(3):819‑20

(60) Guzzi G, Minoia C, Pigatto PD, Severi G. Methylmercury, amalgams, and children’s health. Environ Health Perspect. 2006; 114:149; & www.myflcv.com/damspr1.html

(69)   D Gonzalez-Ramirez et al; "Uninary mercury, porphyrins, and neurobehavioral changes of dental workers in Monterrey, Mexico”, J Pharmocology and Experimental Therapeutics, 272(1): 264-274,1995

(70)   D.Echeverria et al, Batelle Center for Public Health Research, Seattle, "Behavioral Effects of Low Level Exposure to Hg vapor Among Dentists",   Neurotoxicology & Teratology; 17(2):161-168(1995);

(73)   M.E.Cianciola et al, “Epidemiologic assessment of measures used to indicate exposure to mercury vapor”, Toxicol Eniviron Health, 1997, 52(1):19-33.

(75) Novembrino C, Bamonti F, Minoia C, Guzzi G, Pigatto PD. Homocysteine

and mercury dental amalgam. Paper & presentation, 8th International Conference on

Mercury Global Pollutant, Madison, WI, USA; R-103,434,2006

(84)   A.G.Riedl et al, Neurodegenerative Disease Research Center, King’s College, UK, “P450 and hemeoxygenase enzymes in the basal ganglia and their role’s in Parkinson’s disease”, Adv Neurol, 1999; 80:271-86; &         Alfred V. Zamm. Dental Mercury: A Factor that Aggravates and Induces Xenobiotic Intolerance.  J.              Orthmol. Med. v6#2 pp67-77 (1991).

(96)   Goyer RA, National Institute of Environmental Health Sciences.  Toxic and essential metal interactions.  Annu Rev Nutr 1997; 17:37-50; & Nutrition and metal toxicity.  Am J Clin Nutr 1995; 61(Suppl 3): 646S-      650S; & Goyer RA et al, Environmental Risk Factors for Osteoporosis, Envir Health Perspectives, 1994, 102(4): 390-394; ; & Lindh U, Carlmark B, Gronquist SO, Lindvall A. Metal exposure from amalgam alters the             distribution of trace  elements in blood cells and plasma.  Clin Chem Lab Med 2001 Feb;39(2):134‑142. ; & A.F.Goldberg et al, “Effect of Amalgam restorations on whole body potassium and bone mineral content in older men”,Gen Dent,            1996, 44(3): 246-8; & K.Schirrmacher,1998, “Effects of lead, mercury, and methyl mercury on gap junctions and [Ca2+]I in bone cells”, Calcif Tissue Int 1998 Aug;63(2):134‑9..

(111) (a) Quig D, Doctors Data Lab,"Cysteine  metabolism and metal  toxicity", Altern Med Rev,   1998;3:4, p262‑270, & (b)  J.de  Ceaurriz et al, Role of gamma‑  glutamyltraspeptidase(GGC) and extracellular         glutathione in dissipation of inorganic mercury",J Appl Toxicol,1994, 14(3): 201‑;     & Zalups RK, Barfuss DW.  Accumulation and handling of inorganic mercury in the kidney after coadministration with glutathione, J Toxicol Environ Health, 1995, 44(4): 385-99;

(114)                      M.Aschner et al, “Metallothionein induction in fetal rat brain by in utero exposure to elemental mercury

           vapor”, Brain Research, 1997, dec 5, 778(1):222-32;& Matts RL, Schatz JR, Hurst R, Kagen R.   Toxic heavy metal ions inhibit reduction of disulfide bonds.  J Biol Chem 1991; 266(19): 12695-702; Boot JH.  Effects of SH-blocking compounds on the energy metabolism in isolated rat hepatocytes.  Cell Struct Funct 1995; 20(3): 233-8;   & Baauweegers HG, Troost D.  Localization of metallothionein in the mammilian central nervous system..   Biol Signals 1994, 3:181-7.

(116)                      Liebert CA; Wireman J; Smith T; Summers AO, "The impact of mercury released from dental "silver" fillings on antibiotic resistance in the primate oral and intestinal bacterial flora", Met Ions Biol Syst 1997;34:441-60  ;A.O.Summers et al, Antimicrobial Agents and Chemotherapy, 37(4):825-834,1993; &   The  Physiologist 33(4), A-116,1990; & J. Wireman et al, Appl Environ Microbiol, 1997, 63(11):4494-503.

(117)                      C.Edlund et al, "Resistance of the Normal Human Microflora to mercury and antimicrobials", Clin Infect Dis 22(6):944-950, 1996; & Grewal JS, Tiwari RP.  Resistance to antibiotics, metals, hydrophobicity and klebocinogeny of Klebsiella pneumoniae isolated from foods.  Cytobios 1999; 98(388):113‑23;


(126)                      (a)Singh I, Pahan K, Khan M, Singh AK. Cytokine-mediated induction of ceramide production is redox-sensitive. Implications to proinflammatory cytokine-mediated apoptosis in demyelinating diseases. J Biol Chem. 1998 Aug 7;273(32):20354-62; & Pahan K, Raymond JR, Singh I. Inhibition of phosphatidylinositol 3-kinase induces nitric-oxide synthase in lipopolysaccharide- or cytokine-stimulated C6 glial cells. J. Biol. Chem. 274: 7528-7536, 1999; &Xu J, Yeh CH, et al, Involvement of de novo ceramide biosynthesis in tumor necrosis factor-alpha/cycloheximide-induced cerebral endothelial cell death.  J Biol Chem. 1998 Jun 26;273(26):16521-6; & Dbaibo GS, El-Assaad W, et al,   Ceramide generation by two distinct pathways in tumor necrosis factor alpha-induced cell death.   FEBS Lett. 2001 Aug 10;503(1):7-12; & Liu B, Hannun YA.et al, Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death.J Biol Chem. 1998 May 1;273(18):11313-20;     & (b)  Noda M, Wataha JC, et al, Sublethal, 2-week exposures of dental material components alter TNF-alpha secretion of THP-1 monocytes. Dent Mater. 2003 Mar;19(2):101-5; & Kim SH, Johnson VJ, Sharma RP.    Mercury inhibits nitric oxide production but activates proinflammatory cytokine expression in murine macrophage: differential modulation of NF-kappaB and p38 MAPK signaling pathways.    Nitric Oxide. 2002 Aug;7(1):67-74; & (c) Tortarolo M, Veglianese P, et al,  Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression..  Mol Cell Neurosci. 2003 Jun;23(2):180-92.

(131) Christensen MM, Ellermann-Eriksen S, Mogensen SC.  Influence of mercury chloride on resistance to generalized infection with herpes simplex virus type 2 in mice.  Toxicology 1996, 114(1): 57-66;

161)  M.C.Roberts, Dept. Of Pathobiology, Univ. Of Washington, “Antibiotic resistance in oral/respiratory bacteria”, Crit Rev Oral biol Med, 1998;9(4):522-

(180) Y.Kinjo et al, “Cancer mortality in patients exposed to methyl mercury through fish diet”, J Epidemiol, 1996, 6(3):134-8.

(181)                      P.W. Mathieson, “Mercury: god of TH2 cells”,1995, Clinical Exp Immunol.,102(2):229-30;& (d) Parronchi P, Brugnolo F, Sampognaro S, Maggi E.  Genetic and Environmental Factors Contributing to the Onset of  Allergic Disorders.  Int Arch Allergy Immunol 2000 Jan;121(1):2-9.

(194)                      Lu SC, FASEB J, 1999, 13(10):1169‑83, Regulation of hepatic glutathione synthesis: current concepts and controversies;  & R.B. Parsons, J Hepatol, 1998, 29(4):595-602; &       R.K.Zalups et al,"Nephrotoxicity of inorganic mercury co‑administered with L‑cysteine", Toxicology, 1996, 109(1): 15‑29.  &   T.L. Perry et al, Hallevorden-Spatz Disease: cysteine accumulation and cysteine dioxygenase deficiency, Ann Neural, 1985, 18(4):482-489.

(198)                      E.S. West et al, Textbook of Biochemistry, MacMillan Co, 1957,p853;&  B.R.G.Danielsson et al,”Ferotoxicity of inorganic mercury: distribution and effects of nutrient uptake by placenta and fetus”, Biol Res Preg Perinatal. 5(3):102-109,1984; &   Danielsson et al, Neurotoxicol. Teratol.,  18:129-134;?

(210)                      Mats Berlin,  Mercury in dental  filling materials- environmental medicine risk analysis”, in: [Swedish  Council for Coordinating and Planning Research, Amalgam and Health, FRN,1999];

& Berlin, M; "Expert Consulted For Amalgam Study Demands Amalgam Ban", Swedish Dental Materials Study  ,"Dagens Nyheter", April 26 2003, www.tv4.se/nyheterna/lopsedel.html www.dn.se/DNet/jsp/polopoly.jsp?d=597&a=134259&previousRenderType=6

(212)Ziff, M.F., “Documented Clinical Side Effects to Dental Amalgams”, ADV.  Dent. Res.,1992; 1(6):131-134;

(222)      M. Daunderer,    Handbuch der Amalgamvergiftung, Ecomed Verlag, Landsberg 1998, ISBN 3‑609‑71750‑5 (in German)

(223) The mercury connection in leaky gut syndrome, B Windham(Ed), www.flcv.com/leakyghg.html

(226)      M.A.Miller et al, Mercuric chloride induces apoptosis in human T lymphocytes,  Toxicol Appl Pharmacol, 153(2):250‑7 1998;& Rossi AD,Viviani B, Vahter M.   Inorganic mercury modifies Ca2+ signals, triggers apoptosis, and potentiates NMDA toxicity in cerebral granule neurons.  Cell Death and Differentiation 1997;  4(4):317-24. & Goering PL, Thomas D, Rojko JL, Lucas AD.  Mercuric chloride-induced apoptosis is dependent on protein synthesis.  Toxicol Lett 1999; 105(3): 183-95;

(228)      (a)Dr. T. Rau, Paracelsus Allergy Clinic, Lustmuhle, Switzerland,1996(www); & ?

Dr. B. Shelton, Director, The Allergy Center, Phoenix, Arizona, in (293);  &

E. Cutler, Winning the War against Asthma & Allergies, DAMS(800-311-6265)

(232)      Adolph Coors Foundation, “Coors Amalgam Study: Effects of placement and removal of amalgam fillings”, 1995.  International DAMS Newsletter, p17, Vol VII, Issue 2, Spring 1997. (31 cases); & (b)

Antero Danersund,"Dental Materials and Psychoneuroimmunology Conference". Danderyd Hospital, 14-16 August, 1998;   www.melisa.org/archive/6th_melisa_study_group.html

(251)      (a) Y.Omura et al, Heart Disease Research Foundation, NY,NY, “Role of  mercury in resistant infections and recovery after Hg detox with cilantro”, Acupuncture & Electro-Therapeutics Research, 20(3):195-229, 1995;   &(b) “Mercury exposure from silver fillings”, Acupuncture & Electrotherapy Res, 1996, 133- ; &

(c)Omura, Yoshiaki; Abnormal Deposits of Al, Pb, and Hg in the Brain, Particularly  in the Hippocampus, as One of the Main Causes of Decreased Cerebral Acetylcholine, Electromagnetic Field Hypersensitivity, Pre-Alzheimer's  Disease, and Autism in Children; Acupuncture & Electro-Therapeutics Research, 2000, Vol. 25  Issue 3/4, p230, 3p

(252)      B.J.Shenker et al, Dept. of Pathology, Univ. of Pennsylvania, “Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes: Alterations in cellular glutathione content”, Immunopharmacol Immunotoxicol 1993, 15(2-3):273-90; & Shenker BJ, Guo TL, Shapiro IM.   Mercury-induced apoptosis in human lymphoid cells: evidence that the apoptotic pathway is mercurial species dependent.   Environ Res. 2000 Oct;84(2):89-99.


(254) al-Saleh I, Shinwari N.  Urinary mercury levels in females: influence of dental amalgam fillings.  Biometals 1997; 10(4): 315-23;                  &  Zabinski Z; Dabrowski Z; Moszczynski P; Rutowski J.   The activity of erythrocyte enzymes and basic indices of peripheral blood  erythrocytes from workers chronically exposed to mercury        vapors.   Toxicol Ind Health 2000 Feb;16(2):58‑64.

(256)      D.B.Alymbaevaet al, Med Tr Prom Ekol, 6:13-15, 1995 (Russian)

(258)      Ely, J.T.A., Mercury Induced Alzheimer’s Disease: Accelerating Incicdence?, Bull Environ Contam Toxicol,

2001, 67: 800-6.

(260)      J.S. Woods et al,  “Altered porphyrin metabolites as a biomarker of mercury exposure and toxicity”, Physiol Pharmocol, 1996,74(2):210-15, &   Canadian J Physiology and Pharmacology, Feb 1996; & (b) Strubelt O, Kremer J, et al, Comparative studies on the toxicity of mercury, cadmium, and copper toward the isolated perfused rat liver.  J Toxicol Environ Health. 1996 Feb 23;47(3):267-83; & Kaliman PA, Nikitchenko IV, Sokol OA, Strel'chenko EV.  Regulation of heme oxygenase activity in rat liver during oxidative stress induced by cobalt chloride and mercury chloride.  Biochemistry (Mosc). 2001 Jan;66(1):77-82

(296)   L.Bucio et al, Uptake, cellular distribution and DNA damage produced by mercuric chloride in a human fetal                hepatic cell line.  Mutat Res 1999 Jan 25;423(1‑2):65‑72; &  (b) Ho PI, Ortiz D, Rogers E, Shea TB.             Multiple                 aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA

damage.   J Neurosci Res. 2002 Dec 1;70(5):694-702;

(303) Heavy Metal and Chemical Toxicity,  Dietrich Klinghardt, MD, Ph.D.  www.neuraltherapy.com/chemtox.htm ; & Mercury Toxicity and Systemic Elimination Agents, D. Klinghardt & J Mercola(DO), J of Nutritional and Environmental Medicine, 2001, 11:53-62; & Amalgam Detox, Klinghardt Academy of Neurobiology, 2008

(330) (a) Wilkinson LJ, Waring RH.  Cysteine dioxygenase: modulation of expression in human cell lines by cytokines and control of sulphate production. Toxicol In Vitro. 2002 Aug;16(4):481-3;; & (b)

C.M. Tanner et al,Abnormal Liver Enzyme Metabolism in Parkinsons,Neurology,  1991, 41(5): Suppl 2, 89-92; &      M.T.Heafield et al, "Plasma cysteine and sulphate levels in patients with Motor neurone disease, Parkinson's Disease, and Alzheimers's Disease", Neurosci Lett, 1990, 110(1‑2), 216,20; &    A.Pean et al, "Pathways of cysteine metabolism in MND/ALS", J neurol Sci, 1994, 124, Suppl:59‑61;

(331) C.Gordon et al, “Abnormal sulphur oxidation in systemic lupus erythrmatosus(SLE)”, Lancet,          1992,339:8784,25-6; & P.Emory et al, “Poor sulphoxidation in patients with rheumatoid arthitis”, Ann Rheum Dis,      1992,  51:3,318-20; & Bradley H,et al,  Sulfate metabolism is abnormal in patients with rheumatoid arthritis.           Confirmation by in vivo biochemical findings.  J Rheumatol. 1994 Jul;21(7):1192-6;

(333) A.J.Freitas et al, “Effects of Hg2+ and CH3Hg+ on Ca2+ fluxes in the rat brain”,    Brain Research, 1996,        738(2): 257-64; & P.R.Yallapragoda et al,“Inhibition of calcium transport by Hg salts” in rat cerebellum and    cerebral cortex”, J Appl toxicol, 1996, 164(4): 325-30;     &      E.Chavez et al, “Mitochondrial calcium release by               Hg+2",J Biol Chem, 1988, 263:8, 3582-;  A. Szucs et al,Effects of inorganic mercury and methylmercury on the ionic currents of cultured rat hippocampal neurons. Cell Mol Neurobiol, 1997,17(3): 273-8;

(338) (a)W.Y.Boadi et al, Dept. Of Food Engineering and Biotechnology, T-I Inst of Tech., Haifa, Israel, In vitro effect of           mercury on enzyme activities and its accumulation in the first-trimester human       

placenta, Environ Res, 1992, 57(1):96-106;& In vitro exposure to mercury and cadmium alters term human placental membrane fluidity, Pharmacol, 1992, 116(1): 17-23;  & (b)  J.Urbach et al, Dept. of Obstetrics & Gynecology, Rambam Medical Center, Haifa, Israel, Effect of inorganic mercury on in vitro placental nutrient transfer and oxygen consumption, Reprod Toxicol, 1992,6(1):69-75;& ©  Karp W, Gale TF et al, Effect of mercuric acetate on selected enzymes of maternal and fetal hamsters Environmental Research, 36:351-358; &  W.B. Karp et al, Correlation of human placental enzymatic  activity with trace metal concentration in placenta, Environ   Res. 13:470- 477,1977; & (d)  Boot JH.  Effects of SH‑blocking compounds on the energy metabolism  and glucose uptake in isolated rat  hepatocytes.  Cell Struct Funct 1995 Jun;20(3):233‑8; &  Semczuk M, Semczuk‑Sikora A.  New data on toxic metal intoxication (Cd, Pb, and Hg in particular)  and Mg status during pregnancy.  Med Sci Monit 2001 Mar;7(2):332‑340; & Iioka H, Moriyama I, The effect of inorganic mercury on placental amino acid transport. Nippon sanka Fujinka Gakkai Zasshi 1987; 39(2): 202-6; &   Sastry KV, Gupta PK.   In vitro inhibition of digestive enzymes by heavy metals and their reversal by chelating agent: Part I. Mercuric chloride intoxication.. Bull Environ Contam Toxicol. 1978 Dec;20(6):729-35.

(389) Brunker P, Rother D, Sedlmeier R.  J Mol Gen Genet 1996; 251(3); & Williams MV.  Environ Mol

          Mutagen 1996; 27(1): 30-3; & F Fekete and K Johnson, Antibiotic Resistance and Mercury, Science News - June 24, 2002

(390) (a)Ellingsen DG, Nordhagen HP, Thomassen Y.  Uninary selenium excretion in workers with low exposure to   mercury vapor.  J Appl toxicol 1995; 15(1): 33-6

& (e) Watanabe C, Yoshida K, Kasanuma Y, Kun Y, Satoh H.   In utero methylmercury exposure differentially affects the activities of selenoenzymes in the fetal mouse brain.Environ Res 1999 Apr;80(3):208-14.

(405)   Stejskal J,  Stejskal V. The role of metals in autoimmune diseases and the link to neuroendocrinology  Neuroendocrinology Letters, 20:345‑358, 1999.  www.melisa.org/knowledge/education14.html

(406) Hemorrhagic Colitis Secondary to Acute Elemental Mercury Vapor Poisoning, Laura A Heise, Brant M Wagener, Jennifer R Vigil, Mohamed Othman and Parsa Shahinpoor, Am J Gastroenterol. 2009 Feb;104(2):530-1. Epub 2009 Jan 13.


(410) J.R. Cade et al,  Autism  and schizophrenia linked to malfunctioning enzyme for milk protein digestion.            

Autism, Mar 1999.


(411) Puschel G, Mentlein R, Heymann E, 'Isolation and characterization of dipeptyl peptidase IV from human placenta', Eur J       Biochem 1982 Aug;126(2):359-65; & Seroussi K, Autism and Pervasive         Developmental Disorders , 1998, p174,etc.; &  Shibuya-Saruta H, Kasahara Y, Hashimoto Y. Human serum dipeptidyl peptidase IV (DPPIV) and its unique properties.  J Clin Lab Anal. 1996;10(6):435-40;

(412) (a) Moreno-Fuenmayor H, Borjas L, Arrieta A, Valera V,   Plasma excitatory amino acids in autism.  Invest Clin 1996,37(2):113-28;& Carlsson ML. Is infantile autsim a hypoglutamatergic disorer?  J Neural Transm 1998, 105(4-5): 525-35.    

(424) Munch G; Gerlach M; Sian J; Wong A; Riederer P.  Advanced glycation end products in neurodegeneration:   

more than early                   markers  of oxidative stress? Ann Neurol 1998 Sep;44(3 Suppl 1):S85‑8.      

(427) Chetty CS, McBride V, Sands S, Rajanna B.   Effects in vitro on rat brain Mg(++)-ATPase.   Arch Int Physiol

          Biochem 1990,          98(5):261-7;  & Bara M, Guiet-Bara A, Durlach J. Comparison of the effects of taurine and magnesium on electrical characteristics of artificial and natural membranes. V. Study on the human amnion of the antagonism between magnesium, taurine and polluting metals. [ French]   Magnesium. 1985;4(5-6):325-32; & Bara M, Guiet-Bara A, Durlach J.  Study on the human amnion of the antagonism between magnesium, taurine and polluting metals  Magnesium. 1985;4(5-6):325-32.

(432) Sutton KG, McRory JE, Guthrie H, Snutch TP.   P/Q-type calcium channels mediate the activity-dependent

          feedback of syntaxin-1A.      Nature 1999, 401(6755):800-4;

(442) Kasarskis EJ(MD), Metallothionein in ALS Motor Neurons(IRB #91-22026), FEDRIP                                       DATABASE,           National Technical Information Service(NTIS), ID: FEDRIP/1999/07802766.

(443) Troy CM, Shelanski ML.  Down-regulation of copper/zinc superoxide dismustase causes apoptotic death in

          PC12 neuronal cells. Proc. National Acad Sci, USA, 1994, 91(14):6384-7; & Rothstein JD, Dristol LA,                

Hosier                                    B, Brown RH, Kunci RW.  Chronic inhibition of superoxide dismustase produces                         apoptotic death           of spinal neurons.  Proc Nat Acad Sci, USA, 1994, 91(10):4155-9.

(444) (a) Beal MF. Coenzyme Q10 administration and its potential for treatment of neurodegenerative diseases.  Biofactors 1999, 9(2-4):262-6;   & DiMauro S,  Moses LG; CoQ10 Use Leads To Dramatic Improvements In Patients With Muscular Disorder,   Neurology, April 2001;& C.Schultz et al, CoQ10 slows progression of Parkinson’s Disease; Archives of Neurology, October 15, 2002  & Matthews RT, Yang L, Browne S, Baik M, Beal MF.  Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects.  Proc Natl Acad Sci U S A 1998 Jul 21;95(15):8892-7; & Schulz JB, Matthews RT, Henshaw DR, Beal MF.  Neuroprotective strategies for treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseases.  Neuroscience 1996 Apr;71(4):1043-8; &          Idebenone - Monograph.  A potent antioxidant and stimulator of nerve growth factor.  Altern Med Rev 2001 Feb;6(1):83-86;   & (b)Nagano S, Ogawa Y, Yanaghara T, Sakoda S.  Benefit of a combined treatment with trientine and ascorbate in familial         amyotrophic lateral sclerosis model mice.  Neurosci Lett 1999, 265(3):159-62;    & (c) C. Gooch et al, Eleanor &        Lou Gehrig MDA/ALS Center at Columbia-Presbyterian Medical Center in New York; ALS Newsletter Vol. 6,           No. 3 June 2001

(464)  Walsh, WJ, Health Research Institute, Autism and Metal Metabolism,  www.hriptc.org/autism.htm,                             Oct 20, 2000; &                  Walsh WJ, Pfeiffer Treatment Center, Metal‑Metabolism and Human Functioning,          

2000, www.hriptc.org/mhfres.htm;

& ©  HRI-Pfeiffer Center Autism Study; paper presented to Dan Conference, Jan 2001;  

(465) Walsh WJ, Health Research Institute, Biochemical Treatment of Mental Illness and Behavior Disorders,          

Minnesota Brain Bio Assoc, Nov 17, 1997;    http://www.hriptc.org/Minnesota.htm; & William J. Walsh, Laura         

B. Glab, and Mary L. Haakenson; Pfieffer Treatment Center, Biochemical Therapy and Behavior Outcomes;          

2000,  http://www.hriptc.org/btbres.htm

(479) Amphotericin B, HgCl2 and Peritoneal Transport in Rabbits,  Zweers MM, Douma CE, van der Wardt AB, Krediet RT, Struijk DG. Department of Nephrology, Academic Medical Center, Amsterdam, The Netherlands. Accepted Abstracts : The 3rd European Peritoneal Dialysis Meeting  ‑‑  5‑7 April 1998, Edinburgh, U.K.




(494) (a)Kobayashi MS, Han D, Packer L.   Antioxidants and herbal extracts protect HT-4 neuronal cells against       glutamate-induced cytotoxicity.  Free Radic Res 2000 Feb;32(2):115-24(PMID: 10653482;  & (b)Ferrante     RJ, Klein AM, Dedeoglu A, Beal MF.  Therapeutic efficacy of EGb761 (Gingko biloba extract) in a transgenic mouse model of amyotrophic lateral        sclerosis. J Mol Neurosci 2001 Aug;17(1):89-96   &  Bridi R, Crossetti FP, Steffen VM,    Henriques AT.  The antioxidant activity of standardized extract of Ginkgo biloba (EGb 761) in      rats.          

Phytother Res 2001 Aug;15(5):449-51 ; &(c) Packer L, Tritschler HJ, Wessel K.  Neuroprotection by the    

metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med 1997;22(1-2):359-78(PMID: 8958163); &          

McCarty MF.  Versatile cytoprotective activity of lipoic acid may reflect its ability to activate signalling

intermediates that trigger the heat-shock and phase II responses.  Med Hypotheses 2001 Sep;57(3):313-7   &         Whiteman M, Tritschler H, Halliwell B.  Protection against peroxynitrite-dependent tyrosine nitration and    alpha 1-antiproteinase inactivation by oxidized and reduced lipoic acid. FEBS Lett 1996 Jan 22; 379(1):74-6(PMID: 8566234); & “Decreased phagocytosis of myelin by macrophages with ALA.   Journal of               Neuroimmunology 1998, 92:67-75; & Patrick L.  Mercury toxicity and antioxidants: Part 1: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity.  Altern Med Rev. 2002 Dec;7(6):456-71.   & (d) Z.Gregus et al, “Effect of lipoic acid on biliary excretion of glutathione and metals”, Toxicol APPl Pharmacol, 1992, 114(1):88-96; & (e)Li Y, Liu L, Barger SW, Mrak RE, Griffin WS. Vitamin E suppression of microglial activation is neuroprotective. J Neurosci Res 2001 Oct 15;66(2):163-70.

(514) Firestein GS.  Rheumatoid arthitis, in:Kelley G, HarrisL, Sledge J, (Eds( Textbook of Rheumatology, USA:

WB Saunders Company 1997; p851-88;

(543) U.S. Centers for Disease Control, National Center for Health Statistics,  NHANES III

study(thousands of people’s health monitored), www.flcv.com/NHanes3.html ;  &

www.mercola.com/article/mercury/no_mercury.htm  & Review: cancer related to mercury

exposure, B. Windham (Ed) www.myflcv.com/cancerhg.html   ; & (b) Laks, Dan R. Assessment

of chronic mercury exposure within the U.S. population, National Health and Nutrition

Examination Survey, 1999–2006. Biometals. August 2009; & Laks, D.R. et al, Mercury has

an affinity for pituitary hormones, Medical Hypotheses, Dec 2009; & (c) An Investigation of

Factors Related to Levels of Mercury in Human Hair,   Environmental Quality Institute,

October 01, 2005,

 www.greenpeace.org/raw/content/usa/press/reports/mercury-report.pdf 

www.greenpeace.org/usa/assets/binaries/addendum-to-mercury-report

(560) Ward Dean, Controlling Seizures: A Nutritional Approach, Sep 2000, www.vrp.com

other references:        www.myflcv.com/amalg6.html

 

references not listed can be found in www.myflcv.com/amalg6.html